

QUANTERRA DIGITIZERS RESILIENCE – PUSHING THE BOUNDARIES

Under Water for 5 days & 5 nights

Survived Hurricane Katrina

Frozen In Ice until it melts

Mean Time Between Failure Estimates from Repair & Warranty Records for Q330 Series

System Q330 Series
Date of Analysis 12/31/2021
Years Analyzed 20
Total Units Shipped 7398

	Estimated MTBF	Repairs KMI	Series Operational Hours	Estimated % in Use	Cumulative Units	Average Shipped	'ear
2	360,912	5	1,804,560	50%	412	412	2002
8	1,154,918	5	5,774,592	80%	824	412	2003
4	9,744,624	1	9,744,624	90%	1236	412	2004
2	649,642	20	12,992,832	90%	1648	412	2005
2	706,132	23	16,241,040	90%	2060	412	2006
3	590,583	33	19,489,248	90%	2472	412	2007
4	947,394	24	22,737,456	90%	2884	412	2008
9	714,539	38	27,152,496	90%	3444	560	2009
1	613,891	52	31,922,316	90%	4049	605	2010
4	787,174	45	35,422,812	90%	4493	444	2011
4	527,364	73	38,497,572	90%	4883	390	2012
1	659,671	61	40,239,936	90%	5104	221	2013
0	599,860	70	41,990,184	90%	5326	222	2014
1	694,701	67	46,544,946	95%	5593	267	2015
7	688,147	71	48,858,462	95%	5871	278	2016
5	746,655	68	50,772,522	95%	6101	230	2017
2	708,812	75	53,160,936	95%	6388	287	2018
8	1,362,618	38	51,779,484	95%	6222	351	2019
2	748,402	72	53,884,950	95%	6475	374	2020
8	533,968	104	55,532,706	95%	6673	285	2021
1	703,221	945	664,543,674	89%		7398	OTAL
0 Y	80	MTBF:				\	

BACK TO THE FUTURE...

Q330

VIE (houses Baler44 and QEP)

Twenty years later...

35 years and 8 generations of Quanterra processors" evolved together with network requirements.

Volts-to-bits technology is now unchanged in decades, but <u>SWPP</u> (Size/Weight/Power/Performance) evolution relative to Q680 systems in the 1990's networks improves reliability, data recovery, and siting

options.

Attribute	Q8 vs Q680
Sample rate	12.5 × higher
Storage	1000 × more
Physical Volume	50 × smaller
Power (< 300mW)	200 × less
Weight (< 1kg)	25 × less
Cost (Constant \$)	5 × less
Combined Merit	> 1010!

Q8 IS DIFFERENT

"Never miss an earthquake"

- Internal 3-component ±2g MEMS accelerometer
- Internal supercapacitors for data loss prevention when power is lost
- Average <2 minutes startup time
- Up to 100 GB internal storage (4+ years of storage)
- 7th high resolution channel for digitizing calibration signal or as a main channel
- Independent power management of the frontend and of the backend
- <300mW power consumption in Stand-Alone Recording Mode
- Mesh option for high fidelity stations (de-couple pressure from seismic)

Q8 MESH OPTION

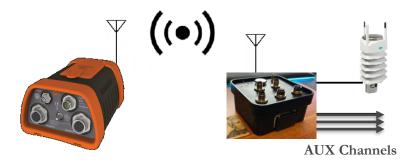
Extend your reach

The modern way to add ancillary sensors

- Wirelessly (IEEE standard)
- With Mesh Net ID
- 100m range

Meteorological sensors attached to QME

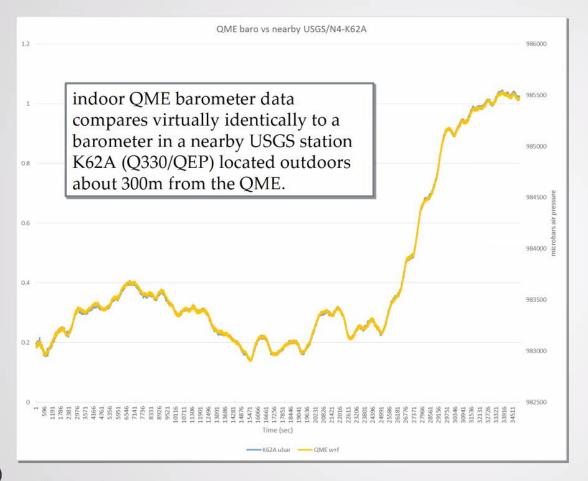
- ✓ Temperature sensor
- ✓ Barometric Pressure sensor
- ✓ Relative Humidity sensor
- ✓ Wind speed and direction sensor


Other sensors attached to QME

- ✓ Tiltmeter and Inclinometer
- ✓ Extensometer
- ✓ External voltage monitoring
- ✓ Strain sensor

MESH NETWORKING

Become fully connected



- * Decouple pressure for HiFi seismic recording
- * Internal barometer
- * QME is 25mW

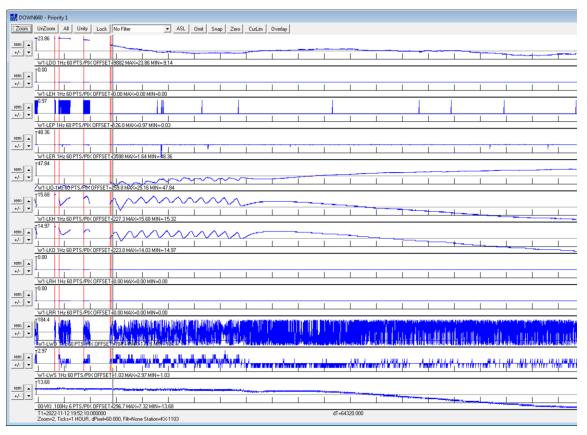
QME data

QME Tx Data, 16-bit values.

	Ch_Name	Description
0	LDW	Barometric pressure (whole hPa)
1	LDF	Barometric pressure (fract hPa)
2	LX1	Digital Inputs bit mask
3	LY1	Analog1 Single-ended (millivolts)
4	LY2	Analog2 Single-ended (millivolts)
5	LY3	Analog3 Single-ended (millivolts)
6	LE4	Analog4 Single-ended (QME supply mV)
7	LY5	Analog5 Differential (millivolts)
8	LY6	Analog6 Differential (millivolts)
9	LK1	QME Temperature (C x100)
10	LWD	WX Wind Dir (Wx val x10)
11	LWS	WX Wind Speed (Wx val x10)
12	LKO	WX Temperature (Wx val x10)
13	LIO	WX Humidity (Wx val x10)
14	LDO	WX Barometer (Wx val x10)
15	LRR	WX Rain Intensity (Wx val x10)

QME DEMO

Proof of concept at AGU



QME DATA DISPLAY

Data appear as additional channels in software

Channel Codes

LDO – Pressure

LEH – Heater Volts

LEP – Supply Volts

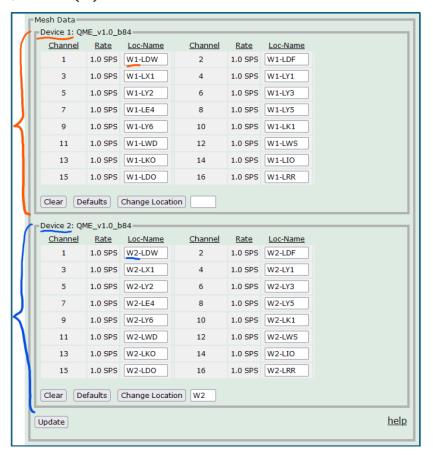
LER – Reference Volts (3.5V)

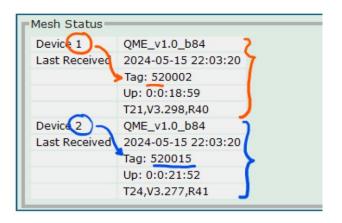
LIO – Humidity

LKH – Heater Temp.

LKO – Temperature

LRH – Hail Intensity


LRR – Rain Intensity


LWD – Wind Direction

LWS – Wind Speed

QME(s) PLURAL

Metcalfe's Law

Two telephones can make only one connection, five can make 10 connections. The more things that are connected to a network, the more valuable that network becomes.....

THE WAY OF THE FUTURE

Wireless HiFi

- 1. Easier deployment logistics
- 2. Sensor positioning freedom
- 3. No additional software
- 4. No trenching, conduits, or ground loops
- 5. Pristine seismic signal

Thank you!

Q&A

Address

Kinemetrics 222 Vista Avenue Pasadena, CA 91107

Contact Us

Direct Line: +1-626-795-2220 www.kinemetrics.com sales@kmi.com

Social Media

facebook.com/osskinemetrics twitter.com/osskinemetrics linkedin.com/company/kinemetrics

NEW INSTRUMENTATION

Since (3) 1969

The newest and the coolest

•	Q330HRS	Datalogger with ALL 6 channels at 26-bit resolution	1
---	---------	---	---

• Q330M+ IMS-compliant CTBTO datalogger of the present and future

Qantix Q8 The wunderkind

• QME Quanterra Mesh Extension for additional environmental sensors in Q8

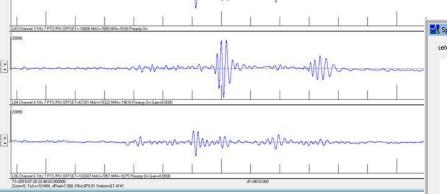
• Pebble Small, light, cost effective 3 channel datalogger

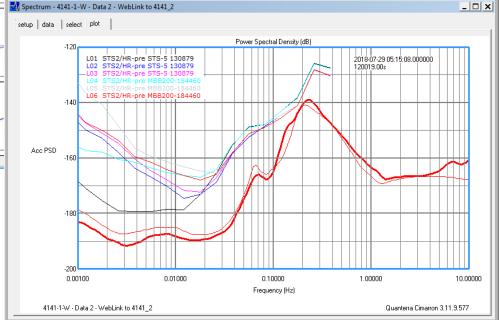
MBB-2 Cost effective miniature broadband seismometer (made in Switzerland)

• Omnisensor MBB-2 and Episensor accelerometer in one borehole package

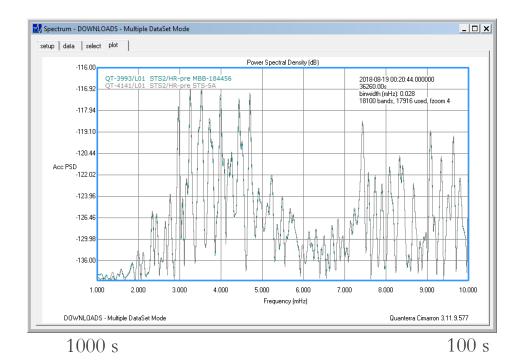

NEW INSTRUMENTATION

MBB-2 Broadband Seismometer


- 290 mW power consumption
- 120 sec to 140 Hz passband
- · No mass lock, no mass centering, by design
- X,Y,Z configuration
- IP68 for direct burial
- Operational temperature -40°C to +60°C

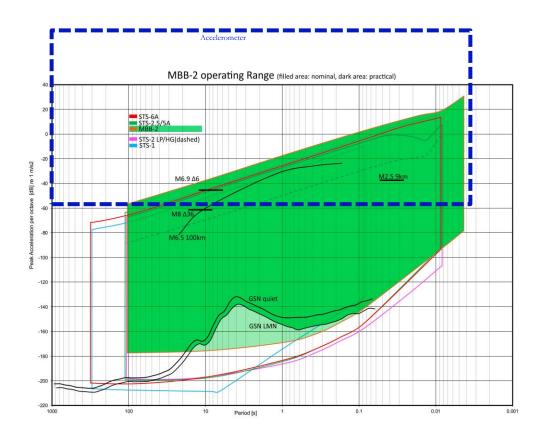

BROADBAND SEISMOMETERS

Zoom | UnZoom | All | Unity | Look | USP0.01


MBB-2 LF event data in comparison to the STS-5. M 6.4 - 5km N of Lelongken, Indonesia Data are recorded at HRV.

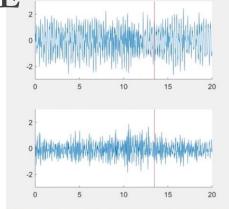
In the timeseries, the top two traces are STS-5 Z and E; the bottom two traces are MBB-2 Z & E. All data are low-pass filtered at 100s period. The waveforms are orbiting Rayleigh and Love waves.

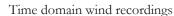
BROADBAND SEISMOMETERS

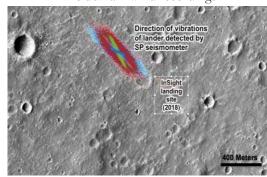


Normal modes excited by a large event: STS-5A and MBB-2 at HRV

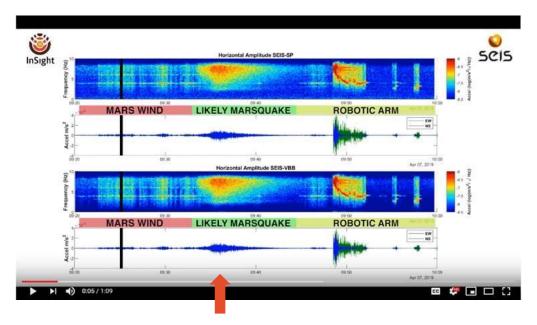
OMNISENSOR = EPISENSOR + MBB-2




INNOVATIONS FOR THE FUTURE


Since (3) 1969

SP-SEIS Seismometer for InSight


Recorded Martian wind immediately after landing

Calculated direction of the wind noise

Recorded Marsquake (source NASA)