Rockhound Concept and Data Flow Antelope/Kinemetrics User's Group 5/29-6/1, 2017

Dennis Pumphrey Manager, Software Engineering Kinemetrics, Inc.

So What is Rockhound₁

Rockhound is a platform-independent, digitizer-neutral and format-neutral data collection and processing software used across a wide variety of products

So What is Rockhound₂

Where is Rockhound used?

PC-based data collection systems (OASIS)

- Includes Windows, Linux, MAC
- Slate-based data collection systems
 - e.g.: Collecting data from a Q330 and generating SEEDLink
- Digitizers: Basalt, Granite, Obsidian, Etna2
 - As the on-board processing, recording, and telemetry software

So What is Rockhound₃

Key Points

- Highly configurable
- Written in Java to be platform independent
- License included for Kinemetrics hardware
- User extensible
- Configurable via web, RockTalk, or ASCII config
- Consists of Rockhound runtime, and companion utilities like RockTalk, RockMonitor

So What is Rockhound₄

How Does it Work?

Rockhound operates by chaining together groups of "modules" into a "layout". Modules exchange data using a subscription/publication model and pass format neutral data packets:

So What is Rockhound₅

Module Types

Modules are one of four basic types:

- Data Sources (Data acquired from a Q330)
- Data Processors (voters, filters)
- Data Endpoints (Data recording or Telemetry)
- Modules not in the data flow (Such as Web Server)

Modules should have one well-defined "job"

Single Source Continuous Recording From a Ring Buffer

Continuous Recording From Two Ring Buffers

Etna2 Telemetry Only

Etna2 Telemetry and Continuous Recording

Adding SEEDLink and Auto-File Delete

Event Recording Etna2

Recording in 2 Formats

Typical Rock Digitizer Data Flow₁

Who Does What?

Time-critical processing is done in the DSP

- Time-stamping of data at the input sample rate
- FIR filtering to output sample rates
- Initial data packaging

Higher Level Features in Main processor

- Triggering and Trigger Filtering
- Output File Formatting
- Telemetry
- Configuration
- User Interfaces
- Peripherals and media

Typical Rock Digitizer Data Flow₂

Rockhound ORB

Rockhound's ORB server can be RAM based or disk based, depending on requirements

It can serve out standard (1s) or low latency (0.1s) data as well as messages and status

The data can be accessed via orb2orb

Our implementation was written this way to be efficient in the digitizer environment on multiple platforms and processors

Rockhound ORB Status

Rockhound's ORB Server produces pf/st packets.

These packets can be configured to include "pretty much" anything that Rockhound knows about.

This is done using a pfst.cfg file that can be found in the SMARTSDist folder.

Data available from Rockhound is basically everything reported with the "rtparams" command on the Rockhound Console (port 9900).

pf/st Status Packet₁

pf/st Status Packet₂

# #	P = T Nx =	his is a persistent parameter				
#	H = F	Hardcoded parameter				
aa		dig1.LocalGPSAntCurrent	*0.(001	F3	
cld		dig1.LocalTcxoDrift	*0.0	001		
clq		dig1.LocalClockQuality	>0:	?	>85:t	>95:I
clt		dig1.LocalGPSLockChanged	*0.0	001	F3	
da		dig1.LocalRockCurrent	*0.0	001	F3	
dg		DataIntegrator.NMissingGroup	DS			
dh		dig1.LocalHumidity				
dlt		dig1.LocalTimeSinceDataArriv	/al	*0.001	F3	
dt		dig1.LocalTemperature				
dv		dig1.LocalRockDCVolts				
elev		dig1.LocalGPSAltitude		*0.001	F3	
esn		dig1.LocalESerialNumber				
gp1		gp1	H			
gp24	4	gp24	Н			
lat		dig1.LocalGPSLatitude				
		dig1.LocalClockQuality				
Ton		dig1.LocalGPSLongitude				

pf/st Status Packet₃

F3

m0	dig1.bd0.LocalMassPos1	*0.001	F3
m1	dig1.bd0.LocalMassPos2	*0.001	F3
m2	dig1.bd0.LocalMassPos3	*0.001	F3
nc	dig1.NPhysicalChannels		
nrb	NStartups	Ρ	
nr24	nr24	Н	
rtm	rtm	Н	*0.001
sn	dig1.LocalSerialNumber		
trb	SMARTS.SystemStartTime	*0.001	
VCO	dig1.LocalTcxoDAC		

Runtime Parameters (port 9900)

> rtparams AltusEVTStorage=/data/events/ AltusEvtArchiver.Type=AltusEvtArchiver CommandConsole.Type=CommandConsole

•••

dig1.SensorRange=2g dig1.ch1.Altitude=0 dig1.ch1.Azimuth=0 dig1.ch1.Damping=0.7 dig1.ch1.DetriggerVotes=1 dig1.ch1.EpiCalCoil=0.0599 dig1.ch1.EpiGain=2 dig1.ch1.EpiRange=2 dig1.ch1.FullScale=2.5 dig1.ch1.FullScaleADCCounts=8388608 dig1.ch1.Gain=1 dig1.ch1.Id=C1 dig1.ch1.NaturalFreq=204.0