
The	New	orb2orb	Program	

Kent	Lindquist	
Boulder	Real	Time	Technologies	
	
May	2017	

2	

Kinemetrics,	Inc.	
§  Founded	in	1969	
§ OYO	Corp	owned	in	1991	
§  ISO9001	since	1999	
§  $35M	FY2012	revenue	
(mostly	international)	

HQ’s	in	Pasadena	CA	with	
Sales	and	Project	offices	in	
Switzerland	&	Abu	Dhabi	

Introduction	-	KMI	

3	

Designs	and	manufactures	sensors	
and	digitizers	–	Provides	complete	
systems	design,	installation	and	
operations	

Designs	High-End	Sensors	

Designs	High-End	Digitizers	

Antelope	Software	

Introduction	–	KMI	Team	

Kinemetrics	Systems	Solutions	
•  Turnkey	complete	systems	including	enterprise-class	computing	centers	and	full	

communications	
Kinemetrics	Hardware	Manufacturer	

•  World	class	Kinemetrics	and	Quanterra	dataloggers	
•  World	class	Kinemetrics,	Metrozet	and	Streckeisen	sensors	

BRTT	Software	Developer	
•  World	class	acquisition	software	for	all	Kinemetrics	hardware	products	
•  Proven	track	record	for	large	networks	with	difficult	remote	deployments	(USArray)	
•  World	class,	com	
•  hensive	automated	and	interactive	seismic	processing	software	
•  Data	neutral	architecture	for	support	of	non-seismic	environmental	monitoring	networks	
•  Extraordinary	Command	&	Control	capabilities	with	SOH	displaying		

Kinemetrics	Services	
•  Complete	systems	procurement,	installation	and	training	including	all	aspects	of	both	

hardware	and	software	
•  Network	operations	

Kinemetrics	/	BRTT	
Comprehensive	Hardware,	Software,	and	Services	

Outline:		

•  Original	design	of	orb2orb	
•  Current	usage	
•  Design	goals	
•  Current	status	
•  Detailed	architecture	explanation	
•  Command	line	
•  Parameter-file	structure	
•  Switching	advice	
•  Future	developments	

•  ARTS	has	been	designed	to	facilitate	
automatic	transfers	of	real-time	continuous	
data	from	one	ORB	to	another:	orb2orb

•  Where	to	run	ORB	packet	transfer	clients,	
like orb2orb?	At	one	ORB,	at	the	other	
ORB,	anywhere	else	with	an	IP	connection	

•  Answer	-	usually,	on	the	same	host	as	the	
output	ORB	so	that	the	pull	is	going	across	
the	long-haul	link	

Inner Workings: Pushes,	pulls	&	state	info	

•  Note	that	most	of	the	inter-host	data	transfers	
are	done	with	ORB	client	pulls	

•  Note	the	simplex	ORB	links	
•  Independency	of	ORB-client	links;	use	of	
threading	

•  Note	the	potential	feedback	data	loop	between	
orb2orb	instances	on	hosts	A	and	B	

•  Client	state	processing	with	Antelope	state	files	

Inner Workings: Pushes,	pulls	&	state	info	

orb2orb:	Current	usage	

•  Many	network-to-network	dataflow	links	
–  up	to	tens	of	connections	to	neighboring	networks		

•  Installations	with	many	orb-protocol	connections	
to	smart	dataloggers	
–  up	to	100’s	of	individual	orb2orb	connections	

•  Integral	part	of	network	data-acquisition	

•  These	multiple	orb2orb	connections	become	
challenging	to	configure,	maintain,	and	monitor	

orb2orb:	new	version	

•  Design	goals	
–  Provide	datalogger	acquisition	functionality	like	q3302orb	and	

altus2orb	
1.  Data	ingestion	and	delivery		

–  including	repackaging	/	renaming	
–  Point-Of-Contact	(POC)	call-in	capability	for	dataloggers	on	dynamic	IPs	
–  Ultimately:	failover	support	

2.  State-of-Health	(SOH)	monitoring		
–  dlmon	capabilities	

3.  Command-and-control	
–  dlcmd	capabilities	

–  Multithreading:	
•  multiple	orb2orb	connections	with	one	instance	
•  connectivity	from	M	source	orbs	to	N	destination	orbs	

–  Consolidate	slew	of	related	programs	(orb2orb,	orbxchange,	
orbxthreads,	orbclone,		etc.)	

–  Preserve	backwards-compatibility	with	old	orb2orb	

orb2orb:	new	version	status	

•  Data	acquisition	capabilities		
•  many-to-many	connections	in	one	instance	
–  Fully	Multithreaded	

•  dlmon-compatible	SOH	output	
•  Backwards	compatibility	with		
–  Legacy	command-line	format	
–  Legacy	parameter-file	format	
–  [N.B.	Not	all	parameters/options	supported]	

•  Embedded	in	GSN	rtdemo(1)	
•  New	libooorb	(see	ooorb(3))	object-oriented	orbserver	
interaction	library	(C++)	

orb2orb:	old	architecture	

Input	Orbserver	 Output	Orbserver	

Old	orb2orb	

•  Served	well	for	many	years	
•  Large	networks	might	have	hundreds	of	individual	instances	
•  Manual	configuration	becomes	burdensome	
•  Insufficiently	supportive	of	direct	data-acquisition	role	from	dataloggers	

orb2orb:	new	architecture	

orb2orb	

Input	Orbservers	

Output	Orbservers	

orb2orb:	new	architecture	

orb2orb	

Input	Orbservers	

Output	Orbservers	queue	

queue	

orb2orb:	new	architecture	

orb2orb	

Input	Orbservers	 Output	Orbservers	

queue	

•  Separate	the	connection	into	two	parts:	
•  The	“read”	half	
•  The	“write”	half	

•  Configure	each	connection	independently	
•  Add	an	internal	queue	to	buffer	data	
•  Allows	you	to	acquire	once,	distribute	to	many	destinations	
•  Allows	you	to	fine-tune	outputs	

•  different	match	expressions	to	different	outputs		

orb2orb:	new	architecture	

orb2orb	

Input	Orbservers	

Output	Orbservers	queue	

queue	

read		
“connections”	

write	
“connections”	

orb2orb:	new	architecture	

orb2orb	

Input	Orbservers	 Output	Orbservers	

queue	

orb2orb:	new	architecture	

orb2orb	

Input	Orbservers	 Output	Orbservers	

queue	

X	

orb2orb:	new	architecture	

orb2orb	

Input	Orbservers	 Output	Orbservers	

queue	

X	

orb2orb:	new	architecture	

orb2orb	

Input	Orbservers	 Output	Orbservers	

queue	

X	

max_queue	=	100	

orb2orb:	new	architecture	

orb2orb	

Input	Orbservers	

Output	Orbservers	queue	

queue	

status	

log	

orb2orb:	dlmon	output	

“connection”	

number	of		
packets		
in	queue	

run	
time	

Status	
Latency	

Data	
Latency	

Resident	
Set	
Size		
(memory)	

orb	name	
queue	name	

direction	

orb2orb:	dlmon	output	

Added:		
•  Number	of	sourcenames	
•  Number	of	waveform	sourcenames	
•  Number	of	packets,	last	24	hours	
•  Number	of	packets	rejected,	last	24	hours,	too	old	
•  Number	of	packets	rejected,	last	24	hours,	too	new	
•  Number	of	packets	rejected,	last	24	hours,	won’t	unstuff	
•  Average	packet	size	(bytes)	
•  Packet	rate	(packets	per	second)	
•  Data	rate	(bits	per	second)	
•  Throughput	(ratio	of	seconds	acquired	to	real-time	elapsed)	

orb2orb:	dlmon	output	

orb2orb:	command	line	

orb2orb				[-v]																																			[CURRENT	SYNTAX]	
																			[-m	match]	
																			[-p	pf]	
																			[-r	reject]	
																			[-S	statefile]	
																			[-t	targetname]	
																																					[[orbtag	orbname]	...]	[start-time	[period|end-time]]	
	
orb2orb				[-v]																																			[LEGACY	SYNTAX]	
																			[-m	match]	
																			[-p	pf]	
																			[-r	reject]	
																			[-S	statefile]	
																			[-t	targetname]	
																																					orbin	orbout	[start-time	[period|end-time]]	
	

orb2orb:	command	line	

•  Example	from	rtdemo	GSN:		
	

orb2orb	-v	-S	state/GSNimport		inputorb		bbarray.ucsd.edu:gsn		outputorb		:gsn	
	

•  “orbtag”	parameters	label	each	actual	
orbname	
–  just	as	in	q3302orb,	altus2orb		

orb2orb:	parameter	file	

connections	&Tbl{	
								&Arr{	
																read_from_orbtag								inputorb	
								}	
								&Arr{	
																write_to_orbtag									outputorb	
								}	
}	
	

orb2orb:	parameter	file	

connections	&Tbl{	
								&Arr{	
																read_from_orbtag								inputorb	
								}	
								&Arr{	
																write_to_orbtag									outputorb	
								}	
								&Arr{	
																read_from_queue									statusq	
																write_to_orbtag									outputorb	
								}	
}	

orb2orb:	default	orb2orb.pf	

orb2orb	

Input	Orbserver	 Output	Orbserver	

mainq	

statusq	

status	

log	

inputorb	 outputorb	

orb2orb:	parameter	file	

connections_defaults	&Arr{	
								read	&Arr{	
																read_from_orbname	
																read_from_orbtag	
																write_to_queue																								mainq	
																starttime	
																endtime	
																too_old	
																too_new	
																check_unstuff																											false	
																suppress_unstuff_errors								false	
								}	
								write	&Arr{	
																read_from_queue																			mainq	
																write_to_orbname	
																write_to_orbtag	
																max_queue																															100	
								}	
								shared	&Arr{	
																name																																										auto	
																run																																														true	
																match	
																reject	
								}	
}	
	

orb2orb:	parameter	file	

connections_special	&Arr{	
								status_create	&Arr{	
																run																																								true	
																write_to_queue																		statusq	
								}	
								log_create	&Arr{	
																run																																									true	
																write_to_queue																		mainq	
								}	
}	
	
time_intervals_sec	&Arr{	
								pfstatusreport																													2	
								internal_timeout																								1	
								shutdown_grace_period											15	
}	
	

orb2orb:	default	orb2orb.pf	

orb2orb	

Input	Orbserver	 Output	Orbserver	

mainq	

statusq	

status	

log	

inputorb	 outputorb	

orb2orb:	switching	advice	--	options	

1.  Run	in	legacy	mode	
– orb2orb	bbarray.ucsd.edu		:	

2.  Add	orbtags	
– orb2orb	inputorb	bbarray.ucsd.edu	outputorb	:	
–  (supported	by	default	parameter-file)		

3.  As	above,	plus	start	adding	other	connections	
to	parameter-file,	adding	more	orbtags	

4.  Don’t	switch	[not	recommended]:	
– orb2orb_dep	bbarray.ucsd.edu:gsn			:	

orb2orb:	planning	for	next	year	

•  Time	and	Multiplex	repackaging	
•  Point-Of-Contact	(“POC”)	Capability	
•  Command-and-control	(dlcmd)	
•  Duplicate	packet	rejection	
•  Additional	legacy	option	&	parameter	support	
•  Failover	to	alternate	input	orbservers	

Thank	You!	
	

Questions?		

