
A Step Toward a True Server-
Client Datascope Capability:

EVServer and EVClient

	
Danny Harvey

Boulder Real Time Technologies, Inc.
Antelope User Group Meeting, ZAMG, Vienna

2017 May

1

Outline	

•  Description of problem	
•  A strategy for a Datascope implemented

server-client database software utility	
•  Antelope 5.7 EVServer and EVClient

classes plus python extensions	

Legacy Datascope	
•  Originally designed to provide high

performance database management
operations on static databases (primarily
as a research tool).	

•  An embedded approach to manipulating
database tables and views.	

•  Support for multiple client interactions
with database largely accomplished
through ad hoc coordination	

•  Ubiquitous use of virtual memory
mapping	

Datascope pros	
•  Very high performance with a small

footprint, equal to or better than Oracle,
MySql, Ingress, Postgress, etc.	

•  Provides complete relational database
management functionality with many
interfaces and without the use of Sql.	

•  Does not require a server. Very easy for
users to quickly interact with databases
in many different ways.	

•  Still today one of the best database
systems for researchers.	

Datascope cons	
•  Does not provide a Sql interface.	
•  In theory, requires all database

interaction be local to the database files.	
•  Does not provide comprehensive, safe

and automated database synchronization
between multiple client processes.	

•  If not managed properly, can cause
problems in a network operations
environment.	

Operational Environment	
•  Automated processing that is

continuously updating many database
tables often.	

•  Simultaneous interactive manual review
by analysts that also causes updating of
many database tables.	

•  Simultaneous administrative tasks, such
as rtdbclean, either automated or
manually run, that can significantly
modify database tables.	

•  Datascope provides basic access to
database fields and records through
pointers into virtual memory mapped
files.	

•  When one process modifies a database
file, it is very easy for other processes to
have invalid references to the database
fields.	

•  The embedded nature of Datascope does
not allow for inter-process, or even inter-
thread synchronization.	

Practical Considerations	
•  Not all database tables change frequently. 	
•  The meta-database tables, site, sitechan, sensor,
instrument, calibration, etc., change
infrequently. Typically these changes are
accommodated by shutting the real-time system
down, ceasing all analyst review operations, change
the meta-database and start everything up again.	

•  The wfdisc table changes on a more frequent basis.
However the wfdisc table is usually only modified
by orb2db or orb2wf and not by any analyst review
processing. 	

•  The database tables associated with event processing
change frequently, both by the automated processing
and by analyst review. This processing involves the
detection, event, origin, origerr, assoc,
arrival, wfmeas, netmag, stamag and mt tables.	

“Event View” specialized server-client
interface into Datascope databases	

•  Two new object oriented c++ classes have
been introduced into Antelope 5.7 –
EVServer and EVClient (see man
EV(3)).	

•  These event view classes provide a
server-client implementation of database
access operations specific to the various
seismic event tables in the css schema.	

EV(3) C Library Functions EV(3)

NAME
EV - BRTT utility for earthquake event view formation

SYNOPSIS
-lbrttutil

#include "EV.h"

DESCRIPTION
There are two fundamental classes, EVServer and EVClient, that implement complete views of earthquake
ev ent information from underlying databases. They are intended to be dynamic in response to changing
databases. Information from events, origins, origin errors, associations, arrivals, detections, stations, magni-
tudes and moment tensors are joined in a set of views that can be returned through a set of specialized
structures.

The underlying database is monitored and the views are made by a single EVServer object. The views are
refreshed automatically by EVServer objects whenever any of the database file modification times have
changed. EVServer makes all of the joins though calls to dbmatches(3) only, without using the various
other Datascope view generation routines, such as dbjoin(3). Most Datascope view generation routines
cannot track dynamic changes in the underlying database. By only using dbmatches(3), which is designed
to track certain changes in the underlying database, EVServer objects can track changes in the database
and recompute the various view structures as required. All calls to dbmatches(3), dbget(3) or dbgetv(3)
made by EVServer objects trap error returns, which could be caused by changes in the database during
EVServer processing. When dbget(3), dbgetv(3) or dbmatches(3) return errors, the EVServer object will
automatically close the database, reopen it, free all dbmatches(3) hooks, and reform the various views.
This will also happen automatically whenever the database files shrink in size.

Once an EVServer object has been created and configured, it will continuously monitor a database and
compute the various event views whenever necessary. Interactions with these views are accomplished
through EVClient objects. Whereas only one EVServer object should be created for a particular database,
any number of EVClient objects can provide independent interfaces to the event view server. Each
EVClient object can run safely on separate threads. The EVServer object notifies each of its clients
through callback procedures whenever the various views have changed. The EVClient objects can then
obtain copies of the changed views from the EVServer object through a set of client methods. All informa-
tion in the event views are copies of the original views kept be the EVServer object. There are no pointers
back to information that could become stale as the views are updated.

EVENT VIEWS
The various event views are returned as c++ structures. The fundamental event view structure, EVEvent, is
defined below.

struct EVEvent {
EVEvent () {

recno_event = -1;
evid = -1;
prefor = -1;
order = -1;
lddate_event = 0.0;
lddate_view = 0.0;
access_time = 0.0;
magnitude = -999.0;
strcpy (magtype, "");
pref_origin = -1;
pref_magnitude_origin = -1;
pref_moment_origin = -1;

}

BRTT Antelope dev 2017-05-25 1

EVServer	

EVClient	

EVClient	

EVClient	

EVServer::run_thread	

EVClient	

database	

•  EVServer objects launch a thread,
EVServer::run_thread, to interact with the
database. This thread is the only thread that interacts
with the database.	

•  The primary responsibility of
EVServer::run_thread is to keep an up to date
internal set of structures that contain all of the
information from the database, including copies of
the database records, all linked together to form
earthquake event oriented views. 	

•  None of the internal structures contain database
pointers or other references back to the database. In
this way the internal structures are complete and self
consistent snapshots of the database at the time when
the structures were made.	

•  EVClient objects can request copies of the
internal structures that EVServer objects
maintain.	

•  EVClient objects can register callback functions
with their EVServer. EVServer::run_thread
will execute these callbacks whenever any of the
internal structures have changed.	

•  All EVClient acquired event view structures
are complete and self consistent snapshots of the
database at the time when the structures were
made.	

•  EVClient objects never try to reference the
database directly.	

Future Development	
•  Separate EVServer and EVClient

objects.	
•  Provide database writing functionality.	

