THE NEW SEISPP MODULES IN ANTELOPE Contrib: A scalable, high performance, Generic Object-Oriented processing Framework with an API for Mortals

Prof. Gary L. Pavlis Department of Earth and Atmospheric Sciences Indiana University

Antelope User's Group Meeting: Victoria, BC, Aug. 30, 2018

BACKGROUND

- Started writing C++ applications with Antelope libraries in early 2000s
- Datascope database
 - Long term fan BUT
 - Learned the lesson that a relational database is not always the right tool (when your only tool is a hammer everything looks like a nail)
- Now a brief monologue on what I think I've learned

WHERE A RELATIONAL DB IS THE RIGHT CHOICE

- Transactional algorithms
 - dbloc2
 - dbpick
 - dbxcor
- Raw waveform management especially if large
- When data is naturally relational (i.e. related tables)
 - Bulletin and catalog data
 - What we manage in dbmaster tables.

PROBLEMS THAT DROVE THIS DEVELOPMENT

- High Performance Computing Issues driven by work on plane wave migration code (PWMIG Pavlis 2011, *Comp & Geosci*)
 - dB programs always IO bound
 - Antelope support issues on HPC clusters
 - HPC file system issues
- Schema issues
 - CSS3.0 designed for raw data, not intermediate processing results
 - Proliferation of nonstandard (often one up) tables
 - Clashing concepts for processed data (e.g. pseudostation stacks)
- Handling intermediate results in complex workflows
- BIGGEST: Every new problem requires a new program

INFLUENCES ON SEISPP UNIX FILTER PROGRAMS

- Old UNIX guy: 40+ yrs of writing shells scripts
- Experience in seismic reflection processing in general and seismic unix in particular
- Development of libseispp library over the past decade
- Lessons learned in 16 yrs of C++ coding
- Witnessing failures in community using bleeding edge (research) technology for an engineering problem

CAVEATS

- This is a prototype
 - Skewed by projects I have ongoing that needed new software tools
 - No attempt to optimize performance
 - Aim is prototype framework for research computing NOT production
 - Some things are good, some need to be redesigned
- Lots of obvious holes especially cleaner metadata management approach
- Incomplete documentation

SO WHAT IS THIS STUFF?

- First, a set of unix filters
- Let's look a couple of examples

SIMPLE EXAMPLE: FILTER AND DISPLAY AN "ENSEMBLE"

#!/bin/csh set ffid=\$1 filter3c "BW 500 5 1500 5" < 4850/\${ffid}.dat | display_ensemble

A MORE COMPLICATED EXAMPLE

#!/bin/csh #PBS -1 nodes=1:ppn #PBS -1 walltime=130:00:00 cd /gpfs/projects/GEOL/GeophysicsLab/Homestake/particle_motion_analysis set elfile=localevids.list set outdir=mwpm_output_files set indir=ensembles set sta=BEAM foreach evid (`cat \$elfile`) foreach sub (deep shallow surface) set infile=\${indir}/tag_evid_\${evid}_subarray_\${sub} echo \$infile set outfile=\${outdir}/mwpm_\${evid}_\${sub}.dat tcecut -40 120 < $infile | dismember \setminus$ subset_streamfile sta:string -eq \$sta -objt ThreeComponentSeismogram \ add_arrivals -t ThreeComponentSeismogram | mwpm > \$outfile end end

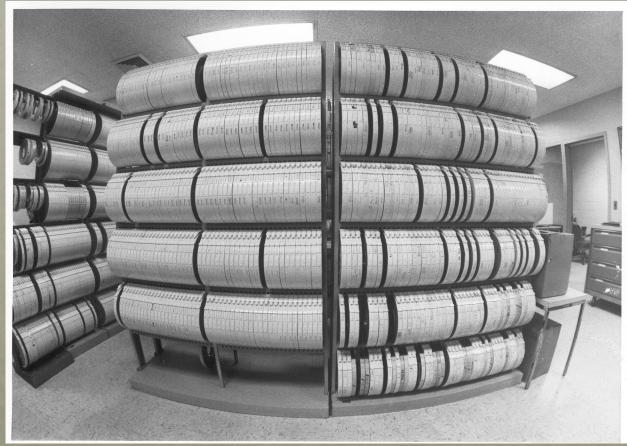
A LIVE EXAMPLE

- If the network works we'll see a screen on a cluster at Indiana
- I'll run a variant of the display script with much longer chain of processing modules

WHAT IT IS #2

- Stream Processing Model
- Working approach used in all reflection processing systems since the 1960s

RELEVANT HISTORY: EARLY COMPUTERS


- Huge machines serviced by high priests
- Earliest machines stored most data on magnetic tape

http://www.columbia.edu/acis/history/tapes.html

THE MAGNETIC TAPE LEGACY:

Assertion: all conventional seismic reflection data processing systems have concepts inherited from mag tape data

http://www.columbia.edu/acis/history/tapes.html

THE MAGNETIC TAPE LEGACY:

- Linear data model
- Streams processing
 - Linear data files
 - Header-based metadata
 - Railroad car processing model

THE LINEAR DATA MODEL:

SEG Y rev 1

May 2002

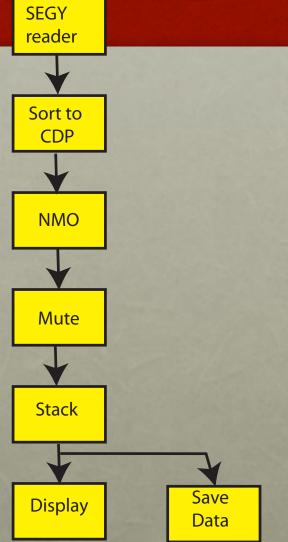
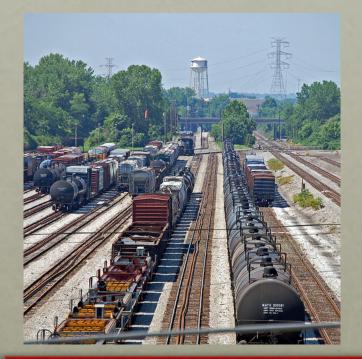

Optional SEG Y Tape Label	3200 byte Textual File Header	400 byte Binary File Header	1 st 3200 byte Extended Textual, File Header (Optional)		N th 3200 byte Extended Textual File Header (Optional)	1 st 240 byte Trace Header	1 st Data Trace		M th 240 byte Trace Header	M th Data Trace
------------------------------------	---	--------------------------------------	--	--	---	--	----------------------------------	--	--	----------------------------------

Figure 1 Byte stream structure of a SEGY file with N Extended Textual File Header records and M traces records

2002 SEGY standard (http://www.seg.org)

STREAMS PROCESSING


- Typical flow shown
- Boxes are processes
- Arrows are data flow
- Traditional
- custom command interpreter (e.g. Disco)
 SU – unix shell
 Modern=GUI

GENERIC CONCEPTS IN REFLECTION STYLE PROCESSING

- The data is not a random collection of stuff but a complete data set with a limited set of organizations (gathers)
- Data flows though a "system" from raw form to final result
- The "system" manages this data flow

RAILROAD SWITCHYARD ANALOG

- Railroad cars are like one seismogram
- Input train is data file
- Side cars are processing modules

Note: I first learned this from David Okaya

http://images.google.com

WHAT IT IS #3: GENERIC OBJECT ORIENTED STREAM PROCESSING

- Data Object types currently supported
- Railroad car analogs
 - TimeSeries
 - ThreeComponentSeismogram
 - PMTimeSeries
- Switchyard analogs (generic gather)
 - TimeSeriesEnsemble
 - ThreeComponentEnsemble
 - Coming: template class <T> ensemble
- StreamObjectFile Concept

STREAMOBJECTFILE CONCEPT

The Familiar Linear File Model:

Object 1

Object 2

• • •

Object N

Note:

- Normally read from 1 to N
- Conceptually like classic data formats like SEGY
- File slots are not constant size like SEGY
- The format is not the data linear (stream) file is the abstract concept

A VERY important idea few in our community understand

DATA AND METADATA ABSTRACTION

• Data

- The core components that define a thing
- Usually requires multiple required data objects
- Example: <u>ThreeComponentSeismogram</u>
- Metadata
 - Auxiliary parameters that define something about the data
 - Traditionally stored as "header" data
 - All supported data objects inherit the Metadata object
 - Generic, open ended header

SUPPORTED DATA TYPES

- Seismograms
 - <u>TimeSeries</u>
 - <u>ThreeComponentSeismogram</u>
 - <u>ComplexTimeSeries</u>
- Ensembles (gathers)
 - <u>TimeSeriesEnsemble</u>
 - <u>ThreeComponentEnsemble</u>
- Novel abstraction
 - <u>PMTimeSeries</u>

METADATA INTERFACE

- get specified type
 - get_string(string key)
 - get_double(string key)
 - get_int(string key)
- Put specified type depend on C++ overloading
 - put(string key, double val)
 - put(string key, string val)
 - put(string key, int val)
- Templates
 - get<T>(string key)

QUICK OVERVIEW OF AVAILABLE MODULES

- Incomplete <u>html documentation</u>
- Will do quick overview in three categories
 - Data import
 - Data export
 - Waveform processing
 - Graphics
 - Metadata manipulators
 - Particle motion analysis

PROGRAM OVERVIEW: DATA IMPORT

- db2seispp Datascope import
- SU3CEnsembleConverter Converts seismic unix data organized as triplets to 3C objects
- dbactive_reader build shot files from continuous data (comparable to db2segy)
- dbxcor_import used to build extended beams with time shifts defined by dbxcor

PROGRAM OVERVIEW: DATA EXPORT

- export_to_matlab exports TimeSeriesEnsemble to matrix that can be read by matlab import function
- export_to_matlab_3C exports
 ThreeComponentEnsemble to matrices that can be
 read by matlab import function
- export_to_su export to seismic unix (TimeSeries data only)

PROGRAM OVERVIEW: WAVEFORM PROCESSING

- agc 3C automated gain control
- apply_statics apply simple static time shifts
- filter3c 3C data filter (uses BRTT filter library)
- linearmoveout applies plane wave (linear) time shifts
- peak_scaling -scale data by peak 3C value (useful for plotting)
- tcecut/window_streamfile time windowing (tcecut for 3C ensembles only, window_streamfile more generic
- sphdiv power law geometric spreading divergence correction
- topmute mute data relative to zero relative time
- zeropad extend the front of a waveform segment with zeros

PROGRAMS OVERVIEW: GRAPHICS

- display_ensemble plot data in a ThreeComponentEnsemble object
- Alternatives
 - Scalar data can be passed through export_to_su and plotted with suxwigb or suximage
 - Use export_to_matlab programs and plot with matlab

PROGRAMS OVERVIEW: METADATA MANIPULATORS 1

- add_arrivals adds arrival times from travel time tables and source/receiver data
- alias_metadata rename one or more attributes
- BasicTimeSeriesAttributes/listhdr Used to dump header (Metadata) contents.
- clrhdrattr housecleaning program to clear one or more attributes in dataset
- csv_join build an extended table to use as input to set_metadata that acts like dbjoin

PROGRAMS OVERVIEW: METADATA MANIPULATORS 2

- dbload_hdr load attributes from antelope db
- dbrevise_source_data update source data in a dataset (used to update headers after a relocation)
- rename_attributes change name tags for one or more attributes stored with data (optionally clear old)
- set_metadata set one or more attributes driven by a pf (fairly flexible but tables have to be built externally)
- set_offset compute and set a distance attribute (mostly for active source data)

PROGRAMS OVERVIEW: UTILITIES

- ator/rota convert between absolute and relative time
- build_index build index for random access (required for sort and parallel reader (discussed later))
- cat_seispp concatenate multiple data files
- dismember/gather take an ensemble apart (dismember) or build ensembles from seismograms (gather)
- fragment take a file apart and write into a directory with one object per file
- seispp_b2t/seispp_t2b switch between binary and text format
- sort1 sort data by one key value (warning primitive pure memory sort intended for simple sort within a pipeline)
- subset_seispp subset data (can be done inline)

PROGRAMS OVERVIEW: PARTICLE MOTION ANALYSIS

- mwpm multiwavlet particle motion estimator (Lorie Bear papers in 1990s)
- mask_pm_snr used to automatically discard pm results for preevent noise
- mwpmavg array average of pm estimates
- pm2wulff converts pm estimates to spherical coordinate values for plotting with Wulff net projection in matlab

 pmto3c – extract major axes as 3C seismograms
 Note: Requires an auxiliary package available on github called ParticleMotionTools

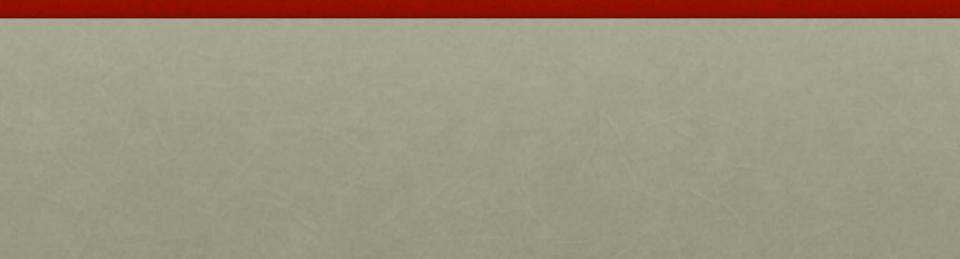
ADDING A NEW PROGRAM

• Procedure:

- cd to \$ANTELOPE/src/contrib/bin/seispp
- Run script: new_seispp_module progname
- cd to progname, edit, debug, man page, install
- Available templates
 - template_instruction.cc simple with embedded comments to process ThreeComponentEnsemble objects
 - template_plain.cc instruction with comments removed
 - template_multiobject.cc contains code example for program supporting multiple data types

THE "API FOR MEER MORTALS" ISSUE IN MY TITLE

- Two examples that are impenetrable by meer mortals
 - <u>Vtk</u>
 - <u>Qt</u>
- Reason: they are large generic packages
- Need: higher level abstraction for domain specific, single concept
- Next slide is an example (not true of everything in my libraries)


STREAMOBJECTFILE API

- Writer:
- <u>Reader:</u>

CLUSTER EXTENSIONS

- <u>IndexedObjectReader</u> random access data reader
- <u>DataSetReader</u> reads a virtual data set assembled from multiple indexed files defined by pf
- <u>PipelineProcessor</u> writer that sends output through a fixed unix pipeline chain
- ParallelReader under development. Aimed as reader for PipelineProcessor chains or one up compute intensive algorithms

DISCUSSION?

