

BIGHORN - San Jacinto Events UCSD Shake Table Tests SJFZ GMPE

Frank Vernon PGC/AUG 30 Aug 2018

Background

- In 1988, EPRI conducted a study (NP-5930) that set out to determine what constitutes damaging earthquake ground motion and to develop criteria for determining exceedance of the Operating Basis Earthquake (OBE)
- In this study, several ground motion characteristics were investigated and trends were established based on observed structural damage for over 250 earthquake histories
- The conclusion reached was that a combination of two parameters is best suited for assessing the potential damage of a given ground motion history;
 - PSA = peak spectral response pseudo-acceleration
 - CAV = cumulative absolute velocity

Background

- In 1997 the NRC published a regulatory guide (NRC-1.166) that provided details on implementation of post-earthquake actions for nuclear power plants (NPPs)
- It included PSA and CAV as well as a new exceedance check using velocity response spectra
- If a M5 or greater EQ occurs within a 200 km radius, a NPP must shutdown unless it can reliably advise the NRC, within 4 hours, that the earthquake's effects on the plant have not exceeded its OBE or CAV design requirements

Bighorn

Main Features

- Now-casting of wavefield spectral content
- Real-time, continuous response spectra exceedence
- Immediate results tailored for response team
- Automatic alarms against engineered criteria (Structural Health Monitoring)
- Independent of Earthquake Location
 - No need to wait for location
 - Applicable for non-earthquake sources
- Quantitative, critical decision support

Bighorn - orbsmrsp

- Ability developed for producing continuous timedependent strong motion response spectra
- Expanded floating point data representations within ORB packets and Datascope waveform files
- Pf ORB packets to represent time continuous strong motion response spectra
- Provides a very fast method for computing continuous time-dependent response spectra for large numbers of channels

Bighorn

- Alarms based on exceedence of Operating Basis Earthquake (OBE)
- Building-block nature of Antelope/Bighorn system and open-architecture APIs allow construction of wide variety of systems for Structural-Health Nowcasting, Earthquake Early Warning, and Post-Earthquake Response

OVERALL	FACILITY MAP	SPEC	TRA	FACILITY SOH
and the second second	Z SMDO3 STATION		1000	monstriioon
	Alarms for station			
	Alarm Time		Alarm Star	te
21:18	8:50 22 October 2012 (day	296) UTC	final	
18:34	4:20 19 October 2012 (day	293) UTC	final-ack	
18:32	2:20 19 October 2012 (day	293) UTC	final-ack	
	5:40 19 October 2012 (day		final-ack	
	3:50 19 October 2012 (day		final-ack	
	0:50 19 October 2012 (day		final-ack	
	7:10 18 October 2012 (day 7:10 17 October 2012 (day		final-ack	
			final-ack	
	3:30 15 October 2012 (day	-	final-ack	
14:28	3:00 15 October 2012 (day	289) UTC	final-ack	

ANZA Events and Stations

ANZA 2005 Mw 5.2

ANZA 2010 Mw 4.9

ANZA 2010 Mw 5.4

ANZA 2013 Mw 4.7

2001 M 5.0

ANZA 2016 Mw 5.2

001 M 5.0

UCSD Shake Table Tests

- Development and Validation of a Resilience-based Seismic Design Methodology for Tall Wood Buildings: Phase I Test
- demands for tall residential and mixed-use buildings in the range of 8~20 stories are increasing.
- One new structural system in this height range are tall wood buildings which have been built in select locations around the world using a relatively new heavy timber structural material known as cross laminated timber (CLT).
- The majority of existing tall CLT buildings are located in non-seismic or low-seismic regions of the world.

UCSD Shake Table Tests

UCSD Shake Table Tests

Loma Prieta - Design Baseline Eq

Northridge - Max Credible Eq * 1.2

SEISMIC HAZARD ANALYSIS

SEISMIC HAZARD ANALYSIS

- Hazard Estimates of Shaking Hazard Maps
 - Site-specific studies

Π

 \Box

Γ.

Cameron Davis/Corbis

08

0.02 0

0.4 0.3 0.2 0.14 0.1 0.06 0.04

SEISMIC HAZARD ANALYSIS

JS PAGER

Risk

₩USG

Mitigate loss and fatalities

0 /	Aid in dis	saste	r response	
S	Earthquake Shaking	Red Alert	USAID	A USAG

Origin Time: V	ing world ENTRAI Ved 2016-08-2 2°N 13.19°E 1	4 01:36:32	2 UTC (03:	36:32 local)			ANSS	Ve	PAGEI ersion
	and Fatalit	15% 15% 20,000 1,000	%S	damage is pr videspread han 1% of G alert level ha nternational Drange alert Significant ca	el for econom robable and the Estimated eco DP of Italy P ve required a level respons level for shak asualtics are li	e disaster is promic losse ast events w national or e. ing-related fa kely.	likely us are less ith this atalities	10	23%	24% 9%
ESTIMATED	POPULATION (k = x1000)		3,522k*	14,037k*	5,753k	1,171k	145k	19k	Зk	0
	MODIFIED	1	11-111	IV	V	VI	VII	VIII	IX	X+
PERCEIVE	D SHAKING	Not felt	Weak	Light	Moderate	Strong	Very Strong	Severe	Violent	Extreme
POTENTIAL	Resistant Structures	none	none	none	V. Light	Light	Moderate	Moderate/Heavy	Heavy	V. Heavy
DAMAGE	Vulnerable Structures	none	none	none	Light	Moderate	Moderate/Heavy	Heavy	V. Heavy	V. Heavy

Limitations of input data, shaking estimates, and lo

Structures: Overall, the population in this region resides in structures that are a mix of vulnerable and earthquake resistant construction. The predominant vulnerable building lypes are nreinforced brick with mud and mid-rise nonductile concrete frame with infill

akes (with MMI les

Date (UTC)	Dist. (km)	Mag.	Max MMI(#)	Shaking Deaths
1997-09-26	51	6.0	VIII(10k)	11
1997-09-26	46	5.7	VIII(2k)	14
1980-11-23	278	69	DX(37K)	24

Selected City Exposure

MMI City	Population
IX Amatrice	:3k
IX. Accumoli	< 1k
VIII Arguata del Tront	o 1k
VIII Norcia	.5k
VIII Montefortino	16
V Perugia	149k
IV Roma	2,563k
IV Firenze	372k
IV Napoli	989k
III Bologna	371k
oold cities appear on map	(k = x1000

Event ID: us10006g7c

Cameron Davis/Corbis

GROUND MOTION PREDICTION EQUATIONS (GMPES)

Shaking = a1*Magnitude + a2*Distance + a3*some other stuff

GROUND MOTION PREDICTION EQUATIONS (GMPES)

HOW THEY'RE MADE

Shaking = a | * Distance+ a2*Magnitude + a3*some other stuff

- Use data from over 20,000 earthquakes...globally
- Get al, a2, and a3 (generally speaking...)

ANZA REGION

- Data-rich region
- Vp,Vs, Qp, and Qs
- Detailed fault mapping

APPROACH

- Data from Southern California
 - > 10,000 events
 - 80 stations
- > 120,000 recordings
- M ~| 4
- Distance ~0 180km

METHODS

- Need a small M GMPE in a flexible framework
- Invert data for an Anza regional GMPE

DATABASE OPS

- Properly built dbmaster
 - site information, instrumentation information
- Build standard event oriented database
 - event, origin, assoc, arrival tables
- Select only P wave arrivals
- Use dbwfmeas to load PGA, PGV, and PGD into wfmeas table

DATABASE OPS CONTINUED

- In Python or Matlab
 - Join arrival, assoc, origin, event, netmag tables
 - Select preferred origin
 - Join to wfmeas table
 - Select PGA
 - Plot

Southern California PGA

