BIGHORN - San Jacinto Events UCSD Shake Table Tests

 SJFZ GMPE

 SJFZ GMPE}

Frank Vernon PGC/AUG 30 Aug 2018

Background

- In 1988, EPRI conducted a study (NP-5930) that set out to determine what constitutes damaging earthquake ground motion and to develop criteria for determining exceedance of the Operating Basis Earthquake (OBE)
- In this study, several ground motion characteristics were investigated and trends were established based on observed structural damage for over 250 earthquake histories
- The conclusion reached was that a combination of two parameters is best suited for assessing the potential damage of a given ground motion history;
- PSA = peak spectral response pseudo-acceleration
- $\mathrm{CAV}=$ cumulative absolute velocity

Background

- In 1997 the NRC published a regulatory guide (NRC-1.166) that provided details on implementation of post-earthquake actions for nuclear power plants (NPPs)
- It included PSA and CAV as well as a new exceedance check using velocity response spectra
- If a M5 or greater EQ occurs within a 200 km radius, a NPP must shutdown unless it can reliably advise the NRC, within 4 hours, that the earthquake's effects on the plant have not exceeded its OBE or CAV design requirements
U.S. NUCLEAR REGULATORY COMMISSION

March 1997

REGULATORY GUIDE

OFFICE OF NUCLEAR REGULATORY RESEARCH

A. INTRODUCTION

Paragraph IV(a)(4) of Appendix S, "Earthquake Engineering Criteria for Nuclear Power Plants," to 10 CFR Part 50, "Domestic Licensing of Production and Utilization Facilities," requires that suitable instrumentation ${ }^{1}$ be provided so that the seismic response of welear power plant features important to safety can be nuclear power play Pe (a)(3) of Appendix S evaluated promptly, Paragraph IV(a)(3) of Appendix

This guide provides guidance acceptable to the NRC staff for a timely evaluation after an earthquake of the recorded instrumentation data and for determining whether plant shutdown is required by 10 CFR Part 50 .

The information collections contained in this regulatory guide are covered by the requirements of 10 CFR Part 50 , which were approved by the Office of Management and Budget, approval number 3150-0011. The NRC may not conduct or sponsor, and a person is not

Bighorn

Main Features

- Now-casting of wavefield spectral content
- Real-time, continuous response spectra exceedence
- Immediate results tailored for response team
- Automatic alarms against engineered criteria (Structural Health Monitoring)
- Independent of Earthquake Location
- No need to wait for location
- Applicable for non-earthquake sources
- Quantitative, critical decision support

Bighorn - orbsmrsp

- Ability developed for producing continuous timedependent strong motion response spectra
- Expanded floating point data representations within ORB packets and Datascope waveform files
- Pf ORB packets to represent time continuous strong motion response spectra
- Provides a very fast method for computing continuous time-dependent response spectra for large numbers of channels

Bighorn

- Alarms based on exceedence of Operating Basis Earthquake (OBE)
- Building-block nature of Antelope/Bighorn system and open-architecture APIs allow construction of wide variety of systems for Structural-Health Nowcasting, Earthquake Early Warning, and Post-Earthquake Response

overall	L FACILTYMAP SPEC	
ZZ SMDO3 Station Status: Alarm		
Alarms for station ZZ_SMDO3		
	Alarm Time	Alarm State
	18.5022 October 2012 (day 296 LUTC	
	183492019 Ocrober 2012 (day 293) UTIC	inal-ack
	18332:20 19 Octoker 2012 (day 293) UTC	inaleat
	1825640 12 Octioker 2012 (day 293) UTC	Einat-ack
	18:90:50 [19 Octiber 2012 (day 298) UTC	\#inlesck
	1890:50 19 Octabe 2012 (day 293) UTC	Einslack
	22:37710 18 Ocmbar 2012 (ahy 292) UTIC	Einalack
	06:27:10 17 October 2012 (day 291) UTC	final-ack
	16:18:30 15 October 2012 (day 289) UTC	final-ack
	14:28:00 15 October 2012 (day 289) UTC	final-ack

ANZA Events and Stations

ANZA 2005 Mw 5.2

ANZA 2010 Mw 4.9

ANZA 2010 Mw 5.4

ANZA 2013 Mw 4.7

ANZA 2016 Mw 5.2

UCSD Shake Table Tests

- Development and Validation of a Resilience-based Seismic Design Methodology for Tall Wood Buildings: Phase I Test
- demands for tall residential and mixed-use buildings in the range of 8~20 stories are increasing.
- One new structural system in this height range are tall wood buildings which have been built in select locations around the world using a relatively new heavy timber structural material known as cross laminated timber (CLT).
- The majority of existing tall CLT buildings are located in non-seismic or low-seismic regions of the world.

UCSD Shake Table Tests

UCSD Shake Table Tests

Loma Prieta - Design Baseline Eq

Northridge - Max Credible Eq * 1.2

SEISMIC HAZARD ANALYSIS

Hazard - Estimates of Shaking

- Hazard Maps
- Site-specific studies

2\% Probability of Exceedance in 50 years (PGA)

SEISMIC HAZARD ANALYSIS

- Hazard - Estimates of Shaking

SEISMIC HAZARD ANALYSIS

Hazard - Estimates of Shaking
 - Hazard Maps
 - Site-specific studies

Risk

- Mitigate loss and fatalities
- Aid in disaster response

M 6.2, CENTRAL ITALY Origin Time: Wed 2016-08-24 01:36:32 UTC (03:36:32 local)

 alert lovel have required a nal
international level Iosponso.
Orange alert level tor shaking-related tataitifies
Signicicant casualtios are likely.
Estimated Population Exposed to Earthquake Shaking

ESTMATEDPOPULATION		\cdots	3,522k ${ }^{\text {a }}$	14,037k*	5,753k	1,171k	145k	19k	3k	0
ESTIMATED MODIFIED		1	II-III	IV	V	VI	VII	VIII	IX	X+
PERCEIVED Shaking		Not felt	Weak	Light	Moderate	Strong	Very Strong	Severe	Violent	Extreme
POTENTIAL		none	none	none	\checkmark Light	Light	Moderate	Moderate/heavy	Heavy	V. Heavy
	Vulnerable Structures	none	none	none	Lught	Moderate	Moderatol-Hasy	Heavy	V. Heavy	V. Hoavy

GROUND MOTION PREDICTION EQUATIONS (GMPES)

GROUND MOTION PREDICTION EQUATIONS (GMPES)

HOW THEY'RE MADE

Shaking = al*Distance

+ a2*Magnitude
+ a3*some other stuff
- Use data from over 20,000 earthquakes...globally
- Get al, a2, and a3 (generally speaking...)

ANZA REGION

- Data-rich region
- Vp,Vs, Qp, and Qs
- Detailed fault mapping

Hauksson and Shearer (2006)
Fang et al. (20|6)

- Data from Southern California
- > 10,000 events
- 80 stations
- > 120,000 recordings
- M~I-4
- Distance ~0-I80km

METHODS

- Need a small M GMPE in a flexible framework
- Invert data for an Anza regional GMPE

NGA-West2 database

DATABASE OPS

- Properly built dbmaster
- site information, instrumentation information
- Build standard event oriented database
- event, origin, assoc, arrival tables
- Select only P wave arrivals
- Use dbwfmeas to load PGA, PGV, and PGD into wfmeas table

DATABASE OPS CONTINUED

- In Python or Matlab
- Join arrival, assoc, origin, event, netmag tables
- Select preferred origin
- Join to wfmeas table
- Select PGA
- Plot

Southern California PGA

