


February 2007

• Consider any seismic event oriented processing that can be done after the 
initial location estimate

• Examples:
– Magnitude estimation
– Moment tensor inversion
– Focal mechanism
– Arrival time refinement using cross-correlation followed by relocation
– Any other type of relocation
– Many other examples (alarms, automatic displays, etc.)

• Many programs have been written to do specific event-driven tasks, such as 
orbmag, dbml, orbampmag, dbampmag, orbgenloc, dbgme and 
orb_quake_alarm.

• Much of the effort in writing these programs is in the front-end data 
collecting part (getting event parameters and any waveform data and 
metadata needed), the back-end output disposition part (writing processing 
results out to ORB and/or database), making this work in both real-time 
ORB-driven and offline database-driven environments (usually means 
writing two separate versions) and other features such as the ability to rapidly 
process multiple events in parallel for real-time systems. The actual 
computations do not usually depend on any of these other capabilities.

What is Generalized Event-driven Processing?



February 2007

• Consider a program that acts as a “substrate” to provide all of the front-end, 
back-end and parallel event threading functions while allowing users to insert 
their own computational kernels.

• Such a program, would:
– Work equally well in both off-line database and real-time ORB environments 

WITHOUT requiring ANY changes in the user-written computational kernels.
– Provide the user computational kernels with all necessary event information and 

requested waveform data in a completely consistent manner regardless of where 
the data came from

– Shield the user kernels from decisions and methods relating to where and how to 
get event information and waveform data

– Shield the user kernels from how to dispose of output results
– Provide the user kernels with multiple simultaneous event processing capability 

WITHOUT requiring threading formalisms in the user written computational code
– Provide the user kernels with a capability for rapid computations, including early 

and partial results, in support of early warning applications (e.g. early magnitude 
estimates with incomplete data for tsunami early warning)

– Allow for multiple different computational kernels, possibly from different 
authors, to be run within the same execution 

– Provide the users with the possibility of writing their computational kernels in an 
interpreted scripting language that would naturally open the source code and make 
the details of their computations available to all

– Do all of this in an efficient and robust manner so that the end results are 
produced rapidly with minimum taxing of system resources

What is Generalized Event-driven Processing?



February 2007

• The new programs orbevproc and dbevproc will be 
in the new 4.9 release of Antelope 

• As with orbassoc and dbgrassoc, orbevproc and 
dbevproc are the same exact executable images – this 
insures that they operate consistently and that 
modifications and bug fixes to one always are applied to 
both

• All C code is open source and has been already installed 
into the Antelope contributed source code repository

• An embedded perl interpreter is used to process the user 
computational kernels

• In the initial release, several different magnitude 
computational kernels will be provided as examples

• We encourage the user community to add more 
computational kernels

orbevproc and dbevproc



February 2007

Antelope Automated Event Processing
Waveforms

Dataloggers, other ORBs,
LISS, SeedLink, CD-1, etc.

One or More
ORBs

Raw Detections

from external sources

orbdetect

orbtrigger

travel time
grid

foreign
keys

ttgrid

orbassoc

detections

pick lists

detections

waveforms

CSS – SEED

tran
slat

ions

detectionspick lists

event objects

orbevproc

event objects

?
(event objects,

database rows,

waveform packets,

etc.)

user written
perl scripts

orb2dbt

database rows

event objects

event objects

archive
database



February 2007

1. Read input event info and create temporary event database:
• For orbevproc:
1. Read event ORB object from input ORB.
2. Create disk versions of tables in a temporary database
• For dbevproc:
1. Read single row from origin table
2. Perform joins with all other related tables (assoc, arrival, origerr, 

emodel, predarr, netmag, stamag, wfmeas)
3. Unjoin into a temporary database on disk

2. For each new event create a set of event process instances by calling user-
defined creation methods (new in perl). Pass in the temporary event 
database on disk plus a pointer to a meta-database (e.g. something in 
dbmaster). User written event processing must be implemented (currently)
as perl “objects”, aka perl packages.

3. For each event, call another user written method on each of the processing 
object instances called getwftimes. The user method must return a perl
hash which defines exactly which channels and time windows of waveform 
data are needed. Note that in orbevproc multiple events can be 
processed simultaneously. However, this is hidden from the user script 
level.



February 2007

Perl computational package



February 2007

4. Read waveform data:
• For orbevproc:
1. First try to get waveform data from an archive database. Call the user written processing callbacks as each 

channel of waveform data has been read.
2. After all waveform data has been read from the archive database, look for waveform data in an input ORB. 

Call the user written processing callbacks at user defined time intervals as waveform data is read.
3. Quit processing and flush the processing results when either all of the requested data has been read or a 

user defined timeout has expired.
4. Continue looking for new events and process new events in parallel with other event processing.
• For dbevproc:
1. Read requested waveform data from an archive input database. Call the user written processing callbacks 

as each channel of waveform data has been read.
2. Event processing is strictly sequential.

5. As waveform data is read, call user written methods on each of the processing object instances; 
process_channel, whenever some more data is available for a particular station-channel, 
process_station, whenever all channels are available for a particular station, and 
process_network, whenever all channels are available for the entire network.

6. All waveform data is made available to the user methods as standard in-memory Antelope Trace 
objects as referenced through trace database table rows. Data gaps are indicated by setting the 
trace sample values to special gap values. There is always only one trace database row per 
channel of data. The trace tables row for a particular channel is passed to each user method as 
a Datascope database pointer. There are subroutines in the Antelope perl extensions for 
manipulating sample data referenced through trace tables.



February 2007

7. User processing object instances create output results 
primarily by adding to the temporary event database that 
was passed to it when it was created. In a future 
modification user written object instances will also be 
able to specify new trace objects as output.

8. Dispose of output results:
• For orbevproc:
1. Convert temporary event database, along with new tables and 

modifications of existing tables, back into an event ORB object 
and write it to an output ORB.

2. Lots of changes to orb2dbt to deal with properly merging 
changes to existing origins back into the archive database.

• For dbevproc:
1. Directly merge temporary event database, along with new tables 

and modification of existing tables, back into as output archive
database using the same procedures as orb2dbt.



February 2007

What is an event ORB “object”?

A complete 
properly 
indexed 
temporary 
database, 
containing only 
one origin and 
all relevant 
linked other 
tables, 
encapsulated 
into a single 
parameter file 
ORB packet 
usually with 
srcname
/pf/orb2dbt



February 2007

What is an event ORB “object”?
• At a minimum there must be a single row of an origin

table encapsulated into a pf “Literal” string. Event objects 
with only an origin row are treated by orb2dbt as 
external catalog events to be associated with the existing 
events in the archive database. These type of event objects 
are produced by dborigin2orb.

• In order to promote detections to arrivals for a fully 
defined origin, such as what we would want to do with 
orbassoc output, the assoc and arrival tables must 
also be defined in the event object.

• Additional tables relating to errors and modeling, such as 
origerr, emodel and predarr, may also be defined, 
but these are optional.



February 2007

• All input and output of general parameters 
to and from the user written perl objects 
are done through embedded perl hashes. 

• The user written perl objects generally do 
not know if they are being run from 
orbevproc or dbevproc.

• The details of how to deal with partial 
results have yet to be worked out

notes


