M_{w} Estimation for Regional Seismic Events in the Friuli Area (NE Italy)

Department of Earth Sciences, University of Trieste, Italy

The rationale behind this work

- Within an Interreg IIIb Project between Austria and Italy, with the support from Slovenia, a real-time transfrontier network of seismic stations (broadband, strong motion) has been implemented at the contact AlpsDinarides and runs with the BRTT Antelope ${ }^{\ominus}$ system.
- The need for an independent estimate of magnitude has arisen, since the single national and regional networks each use a different magnitude (different local, duration, coda etc.) and there is no moment estimate for events with magnitude <5 from transnational agencies. This is also a task of the Project ProCiv-INGV 2004-06: S4.
- By estimating in real time the moment magnitude for the events recorded by the network, all events could have a common independent parameter, that would also allow and easier comparison with events from other regions.

AUG, Trieste - February 27-28, 2007

Method used to determine the seismic mo

(Andrews 1986)

Spectral amplitude at receiver

$$
A(f)=D(f) E(f) G(R)
$$

Brune (1970) Source Spectrum
$D(f)=\frac{M_{0}}{4 \pi k \rho v^{3}}\left[1+\left(\frac{f}{f_{0}}\right)^{2}\right]^{-1}$

$$
S V 2=2 \int_{0}^{\infty} V^{2}(f) d f
$$

$$
S V 2=\frac{1}{4} \Omega^{2}\left(2 \pi f_{0}\right)^{3}
$$

Attenuation

$$
E(f)=e^{-\left(\frac{\pi \pi f}{Q(f)}\right)}
$$

$$
G(R)=\frac{1}{R}
$$

$$
S D 2=2 \int_{0}^{\infty} D^{2}(f) d f
$$

$$
S D 2=\frac{1}{4} \Omega^{2}\left(2 \pi f_{0}\right)
$$

Method (cont’d)

$$
\begin{aligned}
& S V 2=\frac{1}{4} \Omega^{2}\left(2 \pi f_{0}\right)^{3} \\
& S D 2=\frac{1}{4} \Omega^{2}\left(2 \pi f_{0}\right)
\end{aligned}
$$

$$
\Omega=\sqrt{4(S D 2)^{3 / 2}(S V 2)^{-1 / 2}}
$$

$$
f_{0}=\frac{1}{2 \pi} \sqrt{\frac{S V 2}{S D 2}}
$$

$M_{0}=4 \pi \rho v^{3} \Omega k$

$$
M_{w}=\frac{2}{3} \cdot \log _{10}\left(M_{0}\right)-6,1
$$

$$
r=\frac{2.34 \beta}{2 \pi f_{0}}
$$

The signal and the instrument response are extracted from the database of the Antelope ${ }^{\odot}$ system at DST

Average and instrument response are removed and bandpass filter applied

EW and NS components are combined to obtain the trasversal one to minimize P-wave interferences
"noise" window and "S" window are retrieved and sinusoidal tapering at edges applied

Extracted noise

Extracted S-wave signal

Signal-to-Noise spectral ratio is used to determine the frequency window

Requirements
at least a point with $\mathrm{S} / \mathrm{R}>2.5$

$$
\begin{gathered}
S / R>2.5 \text { for } f_{\text {inf }} \\
S / R>5.0 \text { for } f_{\text {sup }} \\
f_{\text {sup }}<10 H z
\end{gathered}
$$

If the requirements are not met an error message is printed and the signal is rejected

From the signals in acceleration or velocity

Integrate to obtain velocities and displacements
-FFT
-Correction for geometrical spreading and anelastic attenuation

$$
\sqrt{5}
$$

Velocity and displacement spectra estimated
AT THE SOURCE

Example of Estimated Source Spectrum and Theoretical Fit

AUG, Trieste - February 27-28, 2007

Constraints

$$
f_{0}>2 \cdot f_{\mathrm{inf}} \quad f_{0}<f_{\text {sup }}
$$

$$
1 \cdot 10^{4} \mathrm{~Pa}<\Delta \sigma<1 \cdot 10^{8} \mathrm{~Pa}
$$

where

$$
\Delta \sigma=\frac{7 M_{0}}{16}\left(\frac{2 \pi f_{0}}{2,34 \beta}\right)^{3}
$$

If these constraints are NOT met an message is printed and the signal rejected

NOTE: These constraints are still being tested!

Example of computed table

Message	Station	Channel	Type	f inf	f sup	f0	M0	Mw	Distance	Azimuth
OK	MOGG	HG	A	0.1	9.9	1.2	$1.42 \mathrm{E}+16$	4.7	35,154	106
OK	GEPF	HG	A	0.1	9.9	0.6	$5.90 \mathrm{E}+16$	5.1	37,849	83
OK	CESC	HG	A	0.1	9.9	0.2	$2.97 \mathrm{E}+17$	5.6	44,068	95
att.,stress drop"	STOL	HG	A	0.1	9.8	1.1	$3.74 \mathrm{E}+16$	5.0	21,748	102
OK	MASA	HG	A	0.1	9.9	0.5	$1.07 \mathrm{E}+17$	5.3	21,914	45
OK	PRAD	HG	A	0.1	10.0	0.4	$4.31 \mathrm{E}+16$	5.0	57,238	82
Sup min inf	CARC	HG	A	0.0	0.0	0.0	$0.00 \mathrm{E}+00$	0.0	73,941	352
OK	LJU	HG	A	0.0	10.0	0.4	$1.99 \mathrm{E}+17$	5.4	74,376	294
OK	MAJA	HG	A	0.1	9.9	0.4	$6.96 \mathrm{E}+16$	5.1	45,585	71
OK	OBKA	HH	V	0.0	10.0	0.3	$1.60 \mathrm{E}+17$	5.4	72,374	253
OK	CADS	HH	V	0.2	9.8	1.1	$2.55 \mathrm{E}+16$	4.8	12,618	322
OK	TRI	HH	V	0.0	10.0	0.6	$2.64 \mathrm{E}+16$	4.9	67,750	352
OK	KNDS	HH	V	0.0	10.0	0.4	$1.06 \mathrm{E}+17$	5.3	103,812	327
OK	CEY	HH	V	0.0	10.0	0.5	$6.64 \mathrm{E}+16$	5.1	87,657	317
OK	CRES	HH	V	0.0	9.5	0.4	$1.18 \mathrm{E}+17$	5.3	149,148	292
OK	ARSA	HH	V	0.0	10.0	0.2	$2.00 \mathrm{E}+17$	5.4	175,230	235
OK	KBA	HH	V	0.0	10.0	0.5	$2.46 \mathrm{E}+16$	4.8	86,367	165
OK	DST2	HH	V	0.0	9.9	0.6	$3.52 \mathrm{E}+16$	4.9	73,662	350
OK	VINO	BH	V	0.1	9.9	1.1	$1.58 \mathrm{E}+16$	4.7	27,772	76
Average values						0.6 ± 0.3		5.1 ± 0.3		

AUG, Trieste - February 27-28, 2007

Dismiss
AUG, Trieste - February 27-28, 2007

AUG, Trieste - February 27-28, 2007

AUG, Trieste - February 27-28, 2007
latency 30.0 \# group latency
maxwaittime 60.0 \# A hard timeout value in seconds for reading waveform packets.
\# If no waveform packets for the selected channels are received
\# within this time period, then the waveform reading loop is
\# interrupted and any further processing for that event is
\# aborted.
v_r 4.0 \# velocity for surface waves used to determine surface wave arrival time
auto_arr no \# start of measuring time window yes = computed arrival
no $=\mathrm{db}$ arrival
time_window_factor
1.0 \# The waveform for processing the magnitude is determined by a time \# window starting from the arrival defined by the time0 parameter \# to time_factor*(S_time-P-time) seconds after the first P-arrival.

```
distmin 0 # distance range in km
distmax 200 #
```

q 800 \# attenuation value
\# the M0 formula implemented is: $\mathrm{M} 0=4 * \mathrm{pi}^{*} \mathrm{OMEGA}^{*} \mathrm{c} 1^{*} \mathrm{c} 2 \wedge 3 * \mathrm{c} 3$
c1 0.63 \# avarage directivity
c2 3400 \# velocity S wave m/s
c3 2700 \# average density
\# the MW formula implemented is: $\mathrm{MW}=\mathrm{c} 4 * \log 10(\mathrm{M} 0)-\mathrm{c5}$
c4 0.667
c5 6.1
filter BW 0.055105
mag \&Tbl \{
\# stations parameters for computing magnitudes
\# calib deconvolve apply snr twin
\#sta expr db response filter thresh noise c2 c3 c4 c5 minclip maxclip
ARSA HH yes no no $\begin{array}{llllllllllllll}2.0 & 60.0 & 0.0 & 0.0 & 1.0 & 1.0 & 0.0\end{array}$
CEY HH yes no no $\begin{array}{llllllllll}2.0 & 60.0 & 0.0 & 0.0 & 1.0 & 1.0 & 0.0\end{array}$

Origin time: 23 February 2007 06:14:39.419 Lat. 47.011 Lon. $13.270 \mathrm{Ml}=3.11$
ACOM chan: HH Distance: 5.410785e+01 Az: 3.402557e+02 P 06:14:48.658 db S 06:14:55.704 synt noise window start: 06:14:28.622 stop: 06:14:46.658
S window start: 06:14:54.780 stop: 06:15:13.740
signal window start: 06:14:28.622 stop: 06:15:15.740
arrP $1.172211289 \mathrm{e}+09$ otime $1.172211279 \mathrm{e}+09$ trtime $1.628496170 \mathrm{e}+01$
$\mathrm{Mw}=2.56 \mathrm{M} 0=9.47 \mathrm{e}+12 \mathrm{f0}=5.78 \mathrm{OK}$ stype $=\mathrm{V}$ delfrq $=0.0528 \mathrm{fmin}=0.5277 \mathrm{fmax}=9.9736$
AQU chan: HH Distance: 512.16 out of limits ($0.00,200.00$)
ARSA chan: HH Distance: 1.706005e+02 Az: 2.619437e+02 P 06:15:07.996 db S 06:15:30.764 synt noise window start: 06:14:09.129 stop: 06:15:05.996
S window start: 06:15:27.906 stop: 06:16:27.631
signal window start: 06:14:09.129 stop: 06:16:29.631
arrP $1.172211308 \mathrm{e}+09$ otime $1.172211279 \mathrm{e}+09$ trtime $5.134459305 \mathrm{e}+01$
$\mathrm{Mw}=2.49 \mathrm{M} 0=7.58 \mathrm{e}+12 \mathrm{f0}=3.84 \mathrm{OK}$ stype $=\mathrm{V}$ delfrq $=0.0167 \mathrm{fmin}=0.6364 \mathrm{fmax}=9.9812$
CADS chan: HH Distance: $9.301553 \mathrm{e}+01 \mathrm{Az}: 3.378922 \mathrm{e}+02$ P $06: 14: 55.139 \mathrm{db} \mathrm{S} 06: 15: 07.414$ synt noise window start: 06:14:22.134 stop: 06:14:53.139
S window start: 06:15:05.842 stop: 06:15:38.419
signal window start: 06:14:22.134 stop: 06:15:40.419
$\operatorname{arrP} 1.172211295 \mathrm{e}+09$ otime $1.172211279 \mathrm{e}+09$ trtime $2.799492645 \mathrm{e}+01$
$\mathrm{Mw}=2.62 \mathrm{M} 0=1.18 \mathrm{e}+13 \mathrm{f} 0=5.55 \mathrm{OK}$ stype $=\mathrm{V}$ delfrq= $0.0307 \mathrm{fmin}=1.1972 \mathrm{fmax}=9.9770$
CEY chan: HH Distance: 1.650012e+02 Az: 3.284280e+02 P 06:15:07.777 db S 06:15:29.079 synt noise window start: 06:14:10.776 stop: 06:15:05.777
S window start: 06:15:26.243 stop: 06:16:24.079
signal window start: 06:14:10.776 stop: 06:16:26.079 $\operatorname{arrP} 1.172211308 \mathrm{e}+09$ otime $1.172211279 \mathrm{e}+09$ trime $4.965950775 \mathrm{e}+01$

Station rejected:
no freqmax found!
CRES chan: HH Distance: 210.83 out of limits $(0.00,200.00)$
DOBS chan: HH Distance: $1.913175 \mathrm{e}+02 \mathrm{Az}: 3.004683 \mathrm{e}+02 \mathrm{P} 06: 15: 12.776$ synt $\mathrm{S} 06: 15: 36.999$ synt
noise window start: 06:14:07.003 stop: 06:15:10.776
S window start: 06:15:33.663 stop: 06:16:40.771
signal window start: 06:14:07.003 stop: 06:16:42.771
$\operatorname{arrP} 1.172211313 \mathrm{e}+09$ otime $1.172211279 \mathrm{e}+09$ trtime $5.757920837 \mathrm{e}+01$
Station rejected: \quad freqmax $<$ freqmin after Q correction

AUG, Trieste - February 27-28, 2007

Processed Events

(3 major ones (Ml>4.5) and 193 minor ones) Preliminary Antelop locations on large grids is shown

AUG, Trieste - February 27-28, 2007

BOVEC

AUG, Trieste - February 27-28, 2007

RISULTATI MANUALI

Messaggio	stazione	canale	Tipo	finf	f sup	f0	M0	Mw	distanza	Azimut
OK	MOGG	HG	A	0.1	9.9	0.3	$1.22 \mathrm{E}+17$	5.3	35,154	106
OK	GEPF	HG	A	0.1	9.9	0.6	$4.97 \mathrm{E}+16$	5.0	37,849	83
OK	CESC	HG	A	0.1	9.9	0.3	$1.56 \mathrm{E}+17$	5.4	44,068	95
att.,Sd"sospetto"	STOL	HG	A	0.1	9.8	1.2	$3.58 \mathrm{E}+16$	4.9	21,748	102
OK	MASA	HG	A	0.1	9.9	0.4	$1.79 \mathrm{E}+17$	5.4	21,914	45
OK	PRAD	HG	A	0.1	10.0	0.3	$5.73 \mathrm{E}+16$	5.1	57,238	82
OK	CARC	HG	A	0.0	9.9	0.7	$5.50 \mathrm{E}+16$	5.1	73,941	352
OK	LJU	HG	A	0.0	10.0	0.6	$1.27 \mathrm{E}+17$	5.3	74,376	294
OK	MAJA	HG	A	0.1	9.9	0.3	$8.12 \mathrm{E}+16$	5.2	45,585	71
OK	OBKA	HH	V	0.0	10.0	0.3	$1.57 \mathrm{E}+17$	5.4	72,374	253
OK	CADS	HH	V	0.2	9.8	1.0	$3.21 \mathrm{E}+16$	4.9	12,618	322
OK	TRI	HH	V	0.0	10.0	0.6	$2.54 \mathrm{E}+16$	4.8	67,750	352
OK	KNDS	HH	V	0.0	10.0	0.4	$1.31 \mathrm{E}+17$	5.3	103,812	327
OK	CEY	HH	V	0.0	10.0	0.5	$6.97 \mathrm{E}+16$	5.1	87,657	317
OK	CRES	HH	V	0.0	10.0	0.5	$9.48 \mathrm{E}+16$	5.2	149,148	292
OK	ARSA	HH	V	0.0	10.0	0.3	$1.21 \mathrm{E}+17$	5.3	175,230	235
OK	KBA	HH	V	0.0	10.0	0.5	$2.41 \mathrm{E}+16$	4.8	86,367	165
OK	DST2	HH	V	0.0	10.0	0.6	$4.09 \mathrm{E}+16$	5.0	73,662	350
OK	VINO	BH	V	0.1	9.9	1.1	$1.45 \mathrm{E}+16$	4.7	27,772	76
Valori medi						0.5 ± 0.3	$8.35 \mathrm{E}+16$	5.1 ± 0.2		

AUG, Trieste - February 27-28, 2007

RISULTATI AUTOMATICI

Messaggio	stazione	canale	Tipo	finf	f sup	f0	M0	Mw	distanza	Azimut
OK	MOGG	HG	A	0.1	9.9	1.2	$1.42 \mathrm{E}+16$	4.7	35,154	106
OK	GEPF	HG	A	0.1	9.9	0.6	$5.90 \mathrm{E}+16$	5.1	37,849	83
OK	CESC	HG	A	0.1	9.9	0.2	$2.97 \mathrm{E}+17$	5.6	44,068	95
att.,sd"sospetto"	STOL	HG	A	0.1	9.8	1.1	$3.74 \mathrm{E}+16$	5.0	21,748	102
OK	MASA	HG	A	0.1	9.9	0.5	$1.07 \mathrm{E}+17$	5.3	21,914	45
OK	PRAD	HG	A	0.1	10.0	0.4	$4.31 \mathrm{E}+16$	5.0	57,238	82
sup min inf	CARC	HG	A	0.0	0.0	0.0	$0.00 \mathrm{E}+00$	0.0	73,941	352
OK	LJU	HG	A	0.0	10.0	0.4	$1.99 \mathrm{E}+17$	5.4	74,376	294
OK	MAJA	HG	A	0.1	9.9	0.4	$6.96 \mathrm{E}+16$	5.1	45,585	71
OK	OBKA	HH	V	0.0	10.0	0.3	$1.60 \mathrm{E}+17$	5.4	72,374	253
OK	CADS	HH	V	0.2	9.8	1.1	$2.55 \mathrm{E}+16$	4.8	12,618	322
OK	TRI	HH	V	0.0	10.0	0.6	$2.64 \mathrm{E}+16$	4.9	67,750	352
OK	KNDS	HH	V	0.0	10.0	0.4	$1.06 \mathrm{E}+17$	5.3	103,812	327
OK	CEY	HH	V	0.0	10.0	0.5	$6.64 \mathrm{E}+16$	5.1	87,657	317
OK	CRES	HH	V	0.0	9.5	0.4	$1.18 \mathrm{E}+17$	5.3	149,148	292
OK	ARSA	HH	V	0.0	10.0	0.2	$2.00 \mathrm{E}+17$	5.4	175,230	235
OK	KBA	HH	V	0.0	10.0	0.5	$2.46 \mathrm{E}+16$	4.8	86,367	165
OK	DST2	HH	V	0.0	9.9	0.6	$3.52 \mathrm{E}+16$	4.9	73,662	350
OK	VINO	BH	V	0.1	9.9	1.1	$1.58 \mathrm{E}+16$	4.7	27,772	76

AUG, Trieste - February 27-28, 2007

Comparison between "manual" and "automatic" results

Bovec '04

AUG, Trieste - February 27-28, 2007

M_{W} as a function of distance

No station corrections applied for these tests

Bovec '04

AUG, Trieste - February 27-28, 2007

Carnia 2004

AUG, Trieste - February 27-28, 2007

RISULTATI MANUALI

Messaggio	stazione	Canale	tipo	finf	fsup	f0	M0	Mw	distanza	Azimut
OK	PRAD	HG	A	0.1	9.9	0.6	$8.18 \mathrm{E}+15$	4.5	25,735	55
OK	MOGG	HG	A	1.0	8.6	2.4	$1.12 \mathrm{E}+15$	3.9	3,161	217
OK	GEPF	HG	A	0.3	9.7	0.7	$5.33 \mathrm{E}+15$	4.4	11,738	9
OK	STOL	HG	A	0.2	9.8	0.6	$9.59 \mathrm{E}+16$	5.2	14,656	280
OK	GESC	HG	A	0.3	9.6	0.6	$3.37 \mathrm{E}+16$	4.9	11,218	9
OK	MASA	HG	A	0.1	9.9	1.0	$1.03 \mathrm{E}+16$	4.6	30,446	318
OK	KBA	HH	V	0.0	10.0	2.1	$4.50 \mathrm{E}+15$	4.3	77,698	190
OK	ARSA	HH	V	0.0	10.0	0.6	$1.48 \mathrm{E}+16$	4.7	201,522	243
OK	OBKA	HH	V	0.0	10.0	1.4	$8.11 \mathrm{E}+15$	4.5	105,834	263
OK	MOA	HH	V	0.0	10.0	1.2	$1.21 \mathrm{E}+16$	4.6	181,128	
OK	VINO	BH	V	0.2	9.2	1.2	$2.54 \mathrm{E}+15$	4.2	16,519	
Valori medi					1.1 ± 0.6	$1.79 \mathrm{E}+16$	4.5 ± 0.3		328	

		RISULTATI AUTOMATICI								
messaggio	staz	canale	tipo	finf	f sup	f0	M0	Mw	dist	azimut
OK	PRAD	HG	A	0.1	9.9	2.5	$9.84 \mathrm{E}+14$	3.9	25,735	
f0sulliminf	MOGG	HG	A	1.0	8.6	1.6	$2.72 \mathrm{E}+14$	3.5	3,161	
OK	GEPF	HG	A	0.3	9.7	0.8	$3.42 \mathrm{E}+15$	4.3	11,738	217
att,sd"sospetto"	STOL	HG	A	0.2	9.8	1.4	$2.94 \mathrm{E}+16$	4.9	14,656	280
OK	GESC	HG	A	0.3	9.6	0.5	$3.10 \mathrm{E}+16$	4.9	11,218	9
OK	MASA	HG	A	0.1	9.9	1.5	$5.43 \mathrm{E}+15$	4.4	30,446	318
OK	KBA	HH	V	0.0	10.0	1.3	$4.88 \mathrm{E}+15$	4.4	77,698	
OK	ARSA	HH	V	0.0	10.0	0.5	$1.94 \mathrm{E}+16$	4.8	201,522	
OK	OBKA	HH	V	0.0	10.0	1.3	$1.03 \mathrm{E}+16$	4.6	105,834	
OK	MOA	HH	V	0.0	10.0	1.1	$1.40 \mathrm{E}+16$	4.7	181,128	
OK	VINO	BH	V	0.2	9.9	1.3	$2.29 \mathrm{E}+15$	4.2	16,519	
valori medi						1.3 ± 0.6	$1.10 \mathrm{E}+16$	4.4 ± 0.4	207	

Site Effects

STOL (Stolvizza) e GESC (Gemona Scugelars)
Stations used to study site effects

Comparison with $\mathrm{M}_{\mathrm{L}}\left(\right.$ Antelope $\left.^{\ominus}\right)$

Small Events (193 events 3576 traces) (~ 18 stations/event)

AUG, Trieste - February 27-28, 2007

Single-station deviations with respect to average as a function of distance (trace by trace, with 1787 traces successfully processed $\sim 50 \%$ of total)

$$
s(d)=M_{W}(d)-\overline{M_{W}}
$$

AUG, Trieste - February 27-28, 2007

± 0.2	60.0%
± 0.3	77.5%
± 0.5	91.5%
± 1.1	98.5%

The bias towards positive values could be explained with site effects at some stations

AUG, Trieste - February 27-28, 2007

Corner Frequency $\left(\mathrm{f}_{0}\right)$
High dispersion (Di Bona-Rovelli, 1988)

Equivalent radius (r)

$$
r=\frac{2.34 \beta}{2 \pi f_{0}}
$$

For the Bovec 1998 event: $S=4^{2} \pi \sim 50 \mathrm{~km}^{2}$
Bajc et al. (2001): 10kmx6km~60km²
(Inversion result)
AUG, Trieste - February 27-28, 2007

Conclusions

-The method has given moment magnitude values in very good agreement with independent estimates for those events that have it.
-For all events the retrieved moment magnitudes are compatible, even for the smallest considered ones, with the local magnitudes given by the Antelope ${ }^{\oplus}$ system.
-The standard deviation of the single station moment magnitude estimates with respect to the average event estimate is rather low and does not depend on distance.
-For the Bovec 1998 event, for which there is an independent fault size estimate, the equivalent radius value derived with this method validates our procedure.
-Some (~ 20) events seem to have an anomalous equivalent radius, pointing to an either anomalously low stress drop or to possible unreliable corner frequency determination (reasons to be assessed, work in progress).
-The procedure is ready to be used in real-time on the Antelope ${ }^{\circledR}$ system.
AUG, Trieste - February 27-28, 2007

