filter designer — An
Interactive Tool for Designing

Digital Filters

Danny Harvey
Boulder Real Time Technologies, Inc.
Antelope User Group Meeting

ARSQO, Slovenian Environment Agency, Ljubljana
2018 May

All digital filtering in Antelope utilizes
time-domain convolution and recursive
methodologies.

Digital time-domain filtering offers significant
advantages over FFT based frequency-domain

filtering.

1. Can operate on infinite time series in a
continuous fashion.

2. Minimal edge effects that can be confined wi
finite time windows.

3. Much more computationally efficient.

4. Simplicity of implementation.

Implementation of Fourier transforms is done with th
Discrete Fourier Transform (DFT) using a clever digit
algorithm known as the Fast Fourier Transform (FFT)

All DFTs, regardless of how they are implemented, ar
necessarily computed over finite time windows, usua
no more than thousands of time samples, which cause
them to be subject to an artifact known as
“wraparound”.

FFT computational efficiency of order 5 * N * log2(N)

brute force direct time-domain convolution computat
efficiency of order 2 * N * N.

However, most convolutions involve one function (th
filter impulse response) with a reduced and constant
value of N.

All filtering of time sampled waveforms in
Antelope are done in the time domain and do no

involve the computations of signal spectra using
FFTs.

All Antelope digital time domain filters can be
applied to arbitrary time series and can be applie
to continuous time series of indefinite length.

There are no inherent time windowing paramete:
needed by the Antelope filters as there would be
filtering were done in the frequency domain. No
“wraparound” etfects.

The Antelope time domain filters are very
computationally efficient compared to frequency
domain methods

All Antelope time domain filters are implemente:
with the wf£il (3) library which provides gene:
purpose interfaces to various time domain
waveform filter methods.

Specific filtering groups are defined in
wffilbrtt (3), which includes Butterworth,
generalized 5S-domain polynomials, differentiatos
integrator, Wood-Anderson instrument response
generalized FIR filters, and wffilave (3), whicl
provides a variety of averaging filters.

Most filtering in Antelope for the purpose of dat
processing, such as the filters used in orbdetec
for example, is done using recursive digital filter
also known as Infinite Impulse Response, or IIR,
filters.

A new application, filter designer, is avail
in the 5.8 release of Antelope. This app provides
the design and visualization of Antelope IIR filte

Python script using the new Antelope pythonbgplot (31

oython graphics libraries

File Filter
Stage1l:
Stage2:
Stage3:
Stage4:

normalization frequency =

None
None
None

(o] of o)<

None

compute samprate =

102

amplitude
)

filter_designer

response type = Impulse [T

100

phase
o

-100

10° 10
Frequency (hz)

Impulse

0

10 10

Frequency (hz)

2 4 5
Time (sec) Bl

rne riawer

Stage1: v None
Stage2: 1st order low pass o
Stage3: 1st order high pass g
Stage4: 2nd order low pass B

2nd order high pass
Inverted 1st order low pass
Inverted 1st order high pass
Inverted 2nd order low pass

normalization frequency

compute ~Inverted 2nd order high pass | response type =
. Butterworth '
102 ' Wood-Anderson displacement |
'~ Wood-Anderson velocity |
10" ~ Wood-Anderson acceleration |
Integrate Once
0 ~ Integrate Twice |
10 Differentiate Once
Differentiate Twice
10"
()
= o)
= -2 7))
5 10 s
= o
@©
10°
107

order low pass DF C firs_,t order denominator polynon
suitable as a zero frequency

normalized first order low-pass
filter

order high pass DFDIF1 C first order denominator polynon
with a single differentiation

suitable as an infinite frequency
normalized first order high-pass
filter

"order low pass DS B C second order denominator
polynomial suitable as a zero

frequency normalized second
order low-pass filter

"order high pass DSDIF2 B C | second order denominator
polynomial with a double

differentiation suitable as an
infinite frequency normalized
second order high-pass filter

Filter stages are defined in wffilbrtt (3)

o]

Stage4: None

normalization frequency =
INT 1
compute samprate = 100 response type = Impulse [V]
10
10° 100
8 10"
2 3
g e 5
e 10
-3
ke -100
10
107 10" 10° 10" 107 10" 10° 10"
Frequency (hz) Frequency (hz)

Impulse

05 0 0.5 1 15 2 25
Time (sec) B

[he red line is the digital Z-domain response. The thin blu
ine is the analog response. Note the effects of the frequenc
varping.

Stages: None
Stage4: None

(<>] <

normalization frequency =

SPF DF 6.283185e+00

compute samprate = 100 response type = Step [v

10

10° 100

10

amplitude

3
g -100

104

102 10™ 10° 10" 102 10™ 10° 10
Frequency (hz) Frequency (hz)

Step

Time (sec) B |

Stage3: None

| V
Staged: None [T
normalization frequency =
SPF DSDIF2 6.283185e-01 3.947842e+01
compute samprate = 100 response type = Step [v
101 T
10° 100
D 10"
= 2
S g °
= 107 e
]
3
1 -100
104
107 10" 10° 10’ 107 10" 10° 10"
Frequency (hz) Frequency (hz)
o | i
-0.5 0 0.5 1 1.5 2 2.5

Time (sec) i If |

Stage3: None [T
Stage4: None <)
normalization frequency =
SPF DSDIF2 8.796459e-02 3.947842e-03
compute samprate = 100 response type = Step [V]
10!
0
e 100
o 107
E 2
= © 0
o <
g 10?2 o
©
108
-100
104
107 102 10" 10° 10" 107 102 10" 10° 10"
Frequency (hz) Frequency (hz)
o
2
n

Time (sec) Bl

Basic seismometer response (note the filter string

o e P § WAE B

Stage3: None

| V]
Stage4: None [T
normalization frequency =
SPF DS 6.283185e-01 3.947842e+01
compute samprate = 100 response type = Sine [V] frequency = 1.0
10
10° 100
8 10
o < g
E 1072 o
©
3
1 -100
10 -4 \\
107 10" 10° 10" 102 10" 10° 10"
Frequency (hz) Frequency (hz)
| -+ ——+———+———+—————+—H
© | | ! ! ! ‘
£
U) : : AA A A
1 /
-2.5 0 2.5 5 7.5 10 12.5 15
Time (sec) B2 I

Strong motion response function.

-l A VAN A WA A AL LU OA VA A A LNGSA LS .L\/u-t/V.L LU N

. “) .

File

St Clear stages | frequency = 0.0

sl Read from response file...

Stage3: None ;

Stage4: None

normalization frequency =
) @ filter_designer: enter response file
lbname = /Users/danny/rtsystems/rtdemo_gsn/db/gsn ~ copy
ta = AAK chan = BHZ_00 time = 2018123:00:45:57.349

esponse file name = /Users/danny/rtsystems/rtdemo_gsn/dbmaster/response/Streckeisen_STS-1_Seismometer_.9
Status:

Inverted 1st order low pass k2 frequency = 0.0242718000002

2nd order low pass k4 frequency = 0.0243926703301 damping = 0.996000014423
2nd order low pass k4 frequency = 9.17499977475 damping = 0.55499946866
Inverted 1st order low pass k4 frequency = 12.5

A L L A

ization frequency =

IF2 2.423538e-02 2.904693e-04 , NF 1.525042e-01, NF 1.525042e-01, DS 3.053012e-01 2.348975e-02 , DS 6.398947e+01 3.323318e+03 , NF 7.853982¢

compute samprate = 100 response type = Step [v |
/ 100
\
()
© 0
2 d=
o
}
-100
]
10° 1072 10" 10° 10’ 107 102 10" 10° 10’
Frequency (hz) Frequency (hz)

Time (sec) =

Slade4s:

ccccccc samprate = 100

(AAAEAAAREAAAAREAAAARRAAAREAAAARRAAARRRAAAR R

R AR AR

Time (sec)

rted filter stages are inherently unstable. They should
' be used in combination with non-inverted filter stage

pute samprate = 100 response type = Sine i frequency = 1.0 compute samprate = 100 response type = Sine L frequency = 1.0

10
100 100
S
2 2 3
< © a = 0
=Y £ =Y
]
-100 -100
107 10° 10’ 107 107 10° 10’ 10* 107 10° 10’ 10* 107 10° 10’
Frequency (hz) Frequency (hz) Frequency (hz) Frequency (hz)
' ' ')
£
’
0 25 5 75 10 0 25 5 7.5 10
Time (sec) Time (sec) £
filter_designer [] filter_designer
File Filter
nd order low pass i frequency = 1 damping = 0.2 Stagel: 2nd order low pass i frequency = 1 damping = 0.1
nd order high pass i frequency = 1 damping = 0.2 Stage2: 2nd order high pass &4 frequency = 1 damping = 0.1
one | T] Stage3: | None |T]
one | T Stage4: None 1]
) frequency = 1 normalization frequency = 1
74e+00 3.947842e+01, DSDIF2 2.513274e+00 3.947842e+01; G 1.600000e-01 SPF DS 1.256637e+00 3.947842e+01, DSDIF2 1.256637e+00 3.947842e+01; G 3.999999%e-02
pute samprate = 100 response type = Sine | frequency = 1.2 compute samprate = 100 response type = Sine i frequency = 1.2
10’
100 100
S
3 2 @
< 0 = < 0
= S I=
S = =Y
<
-100 -100
10" 10° 10' 10°? 107" 10° 10" 10° 107 10° 10' 107 107 10° 10’
Frequency (hz) Frequency (hz) Frequency (hz) Frequency (hz)
()
=
(7]

0 25 5 7.5 10 0 25 5l 75 10
Time (sec) . Time (sec) £

