

GROUND MOTION PARAMETERS EXTRACTION WITH ANTELOPE AND PYTHON

Laura Cataldi SeisRaM group, University of Trieste

May 28th 2019 Taormina, Italy AUG

Why *GMP_Viewer*

Python script for Ground Motion Parameters (GMP) extraction from seismic waveforms in Antelope databases

GMP_Viewer main concept

- modularity: any new parameter calculation can be added
- control: high customization of signal processing for each individual trace
- clarity: synthetic graphical visualization of the results

$$IV2 = \int_t^{t+\Delta t} v_z^2(t) dt$$
 with $t = t_P$, $t + \Delta t = t_S$

Kanamori, H., E. Hauksson, L. K. Hutton, and L. M. Jones (1993), Determination of earthquake energy release and ML using TERRAscope, *Bull. Seismol. Soc. Am.*, 83, 330–346

Picozzi, M., Bindi, D., Brondi, P., Di Giacomo, D., Parolai, S., and Zollo, A. (2017), Rapid determination of P wave-based energy magnitude: Insights on source parameter scaling of the 2016 Central Italy earthquake sequence, *Geophys. Res. Lett.*, 44, 4036–4045

A look at the code

Apri 👻 🎛	GMP_server.xpy ~/Scrivania			Salva		-		×
1 #!/opt/ant	<pre>elope/python2.7.8/bin/python</pre>							
2								
3 #								
4 # Last mod:	fied 24/01/2019 by Laura							
5 #								
6 # This prog	<code>Jram calculates some main ground motion pa</code>	ame	eters on					
7 # individua	al components taken from traces in a given	ant	elope databa	se.				
8 # It currer	itly calculates PGA, PGV, PGD, PGV/PGA, Ar	Las,	Housner, PS	A				
9 # at 0.3,	1.0 and 3.0 s, EPA, Td (duration), v0 (ico	ints	/duration),	Pd				
10 # (Saragon)	factor), Id (Manfredi damage factor) and	IV2	(squared in	tegral				
11 # of vertic	al component of velocity on P waves signa	; 1	ntegration					1
12 # currently	/ starts at the P pick, if present, or at	the	SINTNETIC P					
13 # arrivat,	and ends at the synthetic S arrival).							
14 #								
15 #								
17 import os								
18 import svs								
19 import sig	าลไ							
20								
21 signal.sig	nal(signal.SIGINT, signal.SIG DFL)							
22 sys.path.a	<pre>opend(os.environ['ANTELOPE'] + "/data/pyth</pre>	on")						1
23	•							
24 import mat	١							1
25 import num	y as np							
26 import obs	у							
27 import ante	elope.stock as stock							
28 import ante	lope.datascope as datascope							
29 import ante	lope.sysinfo as sysinfo							
	Pyth	on 👻	Larg. tab.: 3 👻	Rg 2	26, Col 1	13 -	•	INS

Running the code

> GMP_Viewer.xpy pf/GMP_Viewer.pf

Apri 👻 🖪	GN	MP_Viewer.pf	Salva 📃 🗕	×
1 workdir	/home/Desktop/GMPtest #	working directory o	ontaining db/	
2 chanexpr	HG[ZNEXY] HN[ZNEXY] HN[ZNEXY]_00 HN[ZNEXY]_11 #	channels used	
3 TRrif	475 #	return time used in	NTC08 spettrum	
4 Ctop	T1 #	topographic categor	у	
5 permin	0.02 #	minimum period for	response spectra	
6 permax	3.5 #	maximum period for	response spectra	
7 institution	Dipartimento della Protez	ione Civile Nazionale		
8 institution	0 RAN			
9 institution	1 Rete Accelerometrica Nazi	onale		
10 institution	2 -0-			
11 agenzia	UniTS			
12 logo	DPC.jpg #	logo for report hea	ders	
13				

Running the code

Requirements:

- Python: obspy, matplotlib, numpy, scipy, time, Tkinter, tkFileDialog, contextlib, datetime, math, signal, PIL
- Antelope
- An Antelope database with some tables already available (*sitechan, site, schanloc, wfdisc*); some are optional (*arrival, assoc; origin, event; calibration; stage; Geosite, Spetpar*)

Waveform selection (I)

	Select database	×		
<u>D</u> irectory:	/home/laura/Desktop/GMPtest/db			
testdb testdb.a testdb.a	testdb.origin errival testdb.schanloc essoc testdb.snetsta detection testdb.wfdisc event estid			
Iome del fil	e: testdb	Apri		
File di <u>t</u> ip	0:	<u>A</u> nnulla		
_			Time wi	ndow selection _
			Date (DD/MM/YYYY):	26/10/2016
			Time (HH:MM:SS):	19:18:10
			Duration:	60.0
			Select Run	

E.g.: event of October 26th 2016, 19:18:06, Central Italy sequence, M_w = 5.9

Waveform selection (II)

	Select station _	ĸ
0CAN	Cantiano Temporanea	14
ACC	Accumoli	
ACT	Acquasanta Terme	L
ANB	Ancona2	L
AQV	L_Aquila_Centro_Valle	L
ASP	Ascoli_Piceno	L
BGR	Bagno_di_Romagna	L
BRS	Barisciano	l
BSS	Bussi	I
BTT2	Borgo_Ottomila_2	I
BVG	Bevagna	I
ССТ	Citta_di_Castello_(Trestina)	I
CLF	Colfiorito_Casone	I
CLN	Celano	I
СМВ	Campobasso	I
CPS	Capestrano	L
CSA	Castelnuovo_Assisi	I
CSC	Cascia	I
CSD	Castel_Viscardo	I
CSN	Cesena	I
CS01	Carsoli_1	I
CSS	Cassino	L
CTD	Cittaducale	
CTS	Citta_Di_Castello	
CVM	Civitella Marittima	

Waveform manipulation

Butterworth filter

instrumental correction

Output: IV2

Synthetic P and S picks

Trace used for integration

Documentation

W	Velcome to GMP_Viewer's short manual for ground motion parameters extraction! — GMP_Viewer_manual 0.0 documentation - Mozilla Firefox		- 1	- ×
Welcome to GMP_Viewer's sl 🗙	+			
$\overleftarrow{\leftarrow}$ $ ightarrow$ $\overleftarrow{\frown}$	🛈 file:///home/laura/Documenti/GMPviewer_manual/_build/html/index.html 🛛 💀 😒 🔍 Cerca	立) ≡
🌣 Più visitati 😻 Come iniziare	G Gmail 🛅 dbpick 💩 Antelope Documentatio 🔀 Bollettino Sismico Italia			
GMP_Viewer_manual 0.0 docu	umentation »		next	index
Table of Contents 1. Before you start 2. Preliminary steps	Welcome to GMP_Viewer's short manual for ground motion parameters extraction!			
3. Running the code 4. Note on IV2 parameter	Contents:			
Next topic 1. Before you start: An overview on the program	 1. Before you start 2. Preliminary steps 3. Running the code 3.1. Selecting the database 			
This Page	 3.2. Selecting the time window and the station 			
Show Source	 3.3. Selecting the analysis parameters 3.4. Running the main code block 			
Quick search	4. Note on IV2 parameter			
Go				
GMP_Viewer_manual 0.0 doci	umentation »		next	index

Example of application: GMICEs

Example of application: GMICEs

Example of application: GMICEs

Pros and cons

- works on one trace at a time (can control the analysis parameters)
- works on one component at a time (need to manually select the absolute peak values)
- does not perform event detection or event information extraction
- useful for databases with known issues in the event detection

Future developments

- perform phase pickings
- analyse three components at the same time (no need to manually select the absolute peak values)
- implement the code as a python library

EPA (Effective Peak Acceleration)

Average spectral acceleration over the period range 0.1 to 0.5 sec divided by 2.5 (the standard amplification factor for a 5% damping spectrum)

M PSA03, PSA10, PSA30

5%-damped acceleration response of a SDOF oscillator at different periods

https://www.seismology.az/en/news/274

Kramer, Geotechnical Earthquake Engineering, 1996

Muration

Duration of the signal containing from 5% to 95% of the total energy

Arias intensity $I_A = \frac{\pi}{2g} \int_{0}^{T_d} a^2(t) dt$

Housner intensity $I_{H}(\xi = 5\%) = \frac{\pi}{2g} \int_{0.1}^{2.5} PSV(T, \xi = 5\%) dT$

$\frac{1}{2}$ zero crossings (v_0)

Number of zero crossings per second for the signal containing between 5% and 95% of the total energy

$$P_D = \frac{I_A}{v_0^2}$$

Manfredi damage factor

$$M_F = \frac{2g}{\pi} \frac{I_A}{PGA \times PGV}$$

Eurocode 8 site classification

Table 3.1: Ground types

Ground type	Description of stratigraphic profile	Parameters		
		$v_{s,30}$ (m/s)	N _{SPT} (blows/30cm)	c _u (kPa)
А	Rock or other rock-like geological formation, including at most 5 m of weaker material at the surface.	> 800	_	
В	Deposits of very dense sand, gravel, or very stiff clay, at least several tens of metres in thickness, characterised by a gradual increase of mechanical properties with depth.	360 - 800	> 50	> 250

https://eurocodes.jrc.ec.europa.eu/doc/WS_335/S1_EC8-Lisbon_E%20CARVALHO.pdf

Eurocode 8 site classification

Table 3.1: Ground types

Ground type	Description of stratigraphic profile	Parameters		
		v _{s,30} (m/s)	N _{SPT} (blows/30cm)	c _u (kPa)
С	Deep deposits of dense or medium- dense sand, gravel or stiff clay with thickness from several tens to many hundreds of metres.	180 - 360	15 - 50	70 - 250
D	Deposits of loose-to-medium cohesionless soil (with or without some soft cohesive layers), or of predominantly soft-to-firm cohesive soil.	< 180	< 15	< 70

https://eurocodes.jrc.ec.europa.eu/doc/WS_335/S1_EC8-Lisbon_E%20CARVALHO.pdf

Eurocode 8 site classification

Table 3.1: Ground types

Ground type	Description of stratigraphic profile	Parameters		
		v _{s,30} (m/s)	N _{SPT} (blows/30cm)	c _u (kPa)
E	A soil profile consisting of a surface alluvium layer with v_s values of type C or D and thickness varying between about 5 m and 20 m, underlain by stiffer material with $v_s > 800$ m/s.			
S_1	Deposits consisting, or containing a layer at least 10 m thick, of soft clays/silts with a high plasticity index (PI > 40) and high water content	< 100 (indicative)	_	10 - 20
S_2	Deposits of liquefiable soils, of sensitive clays, or any other soil profile not included in types $A - E$ or S_1			

https://eurocodes.jrc.ec.europa.eu/doc/WS_335/S1_EC8-Lisbon_E%20CARVALHO.pdf

$I = a + b \log(GMP)$

