# Real-time Earthquake Detection System at the Alaska Earthquake Center

Natalia Ruppert
Alaska Earthquake Center
University of Alaska Fairbanks



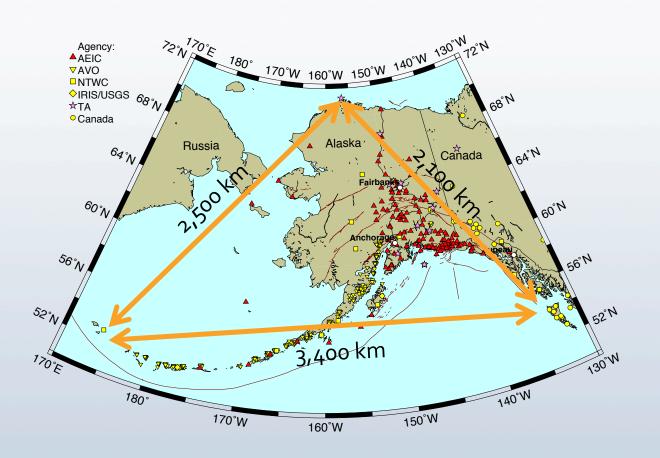


# AEC mission and historical perspective

- Regional seismic network established in Alaska in late 6os- early 7os, in the wake of the 1964 M9.2 Great Alaska earthquake.
- AEIC formally established in 1989 to:
  - Assess seismic hazards for Alaska
  - Collect, analyze and archive seismic data
  - Provide information and assistance to State and local agencies, public and research community
- We are not alone and work with many State and Federal partners.

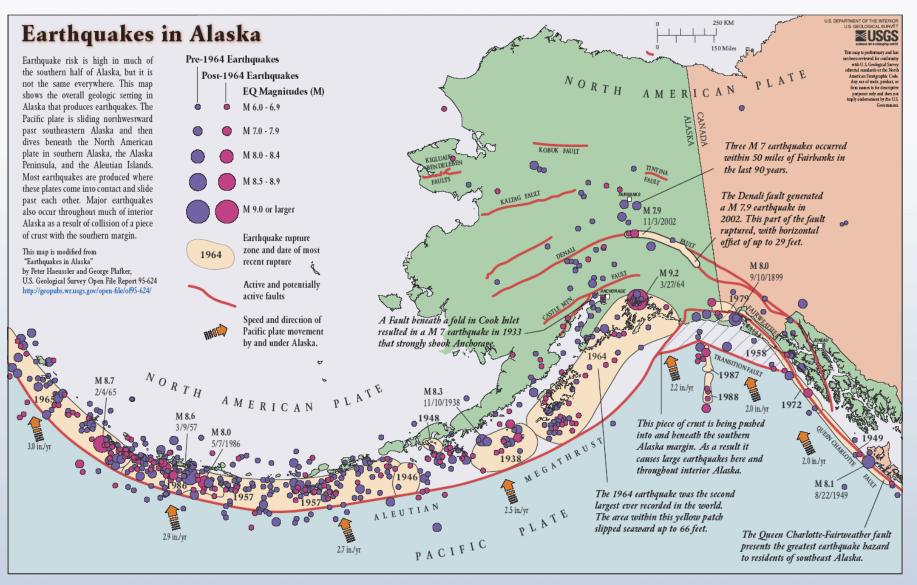
### **Current state**

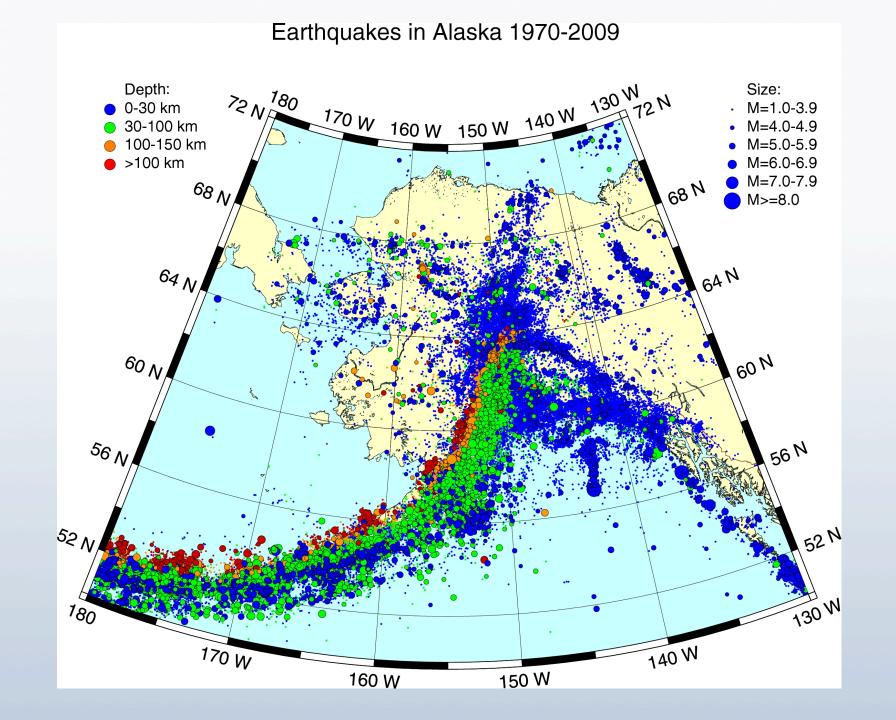
- We are members of ANSS Advanced National Seismic System. One of our key responsibilities is real time earthquake reporting for Alaska region.
- We collect, analyze and archive data from about 400 seismic sites in the State, and also from our neighbors Canada and Russia and Global Seismic Network.
- We locate about 30,000 local and regional earthquakes per year.
- We are responsible for maintenance of ~200 seismic sites.
- We provide seismic monitoring of the Trans-Alaska Oil Pipeline, and hydroelectric dams.
- We participate in the Tsunami Hazard program by producing tsunami inundation maps for coastal communities in the State.
- We currently have 20 staff, faculty and postdoc positions.


# Factors that play into realtime earthquake monitoring

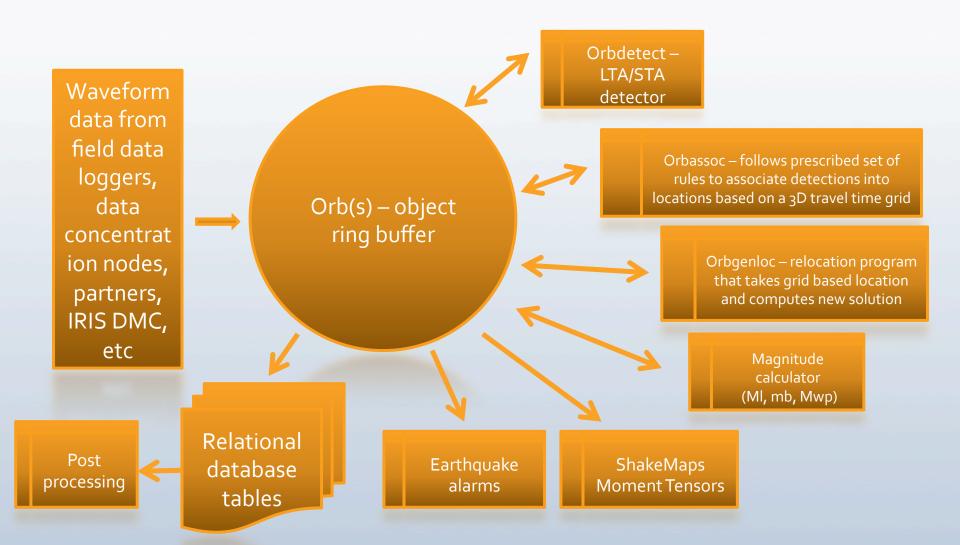
 Processing system: We run Antelope (Boulder Real Time Technologies, Inc.) based systems for real-time and post-processing.

#### • Challenges:


- Need to adhere to reporting standards set by ANSS (Latency of earthquake reporting, accuracy of locations and magnitudes).
- Inhomogeneous station distribution.
- Inhomogeneous seismicity distribution, with earthquake depths ranging down to 250 km.
- Quality of waveforms data, data outages.

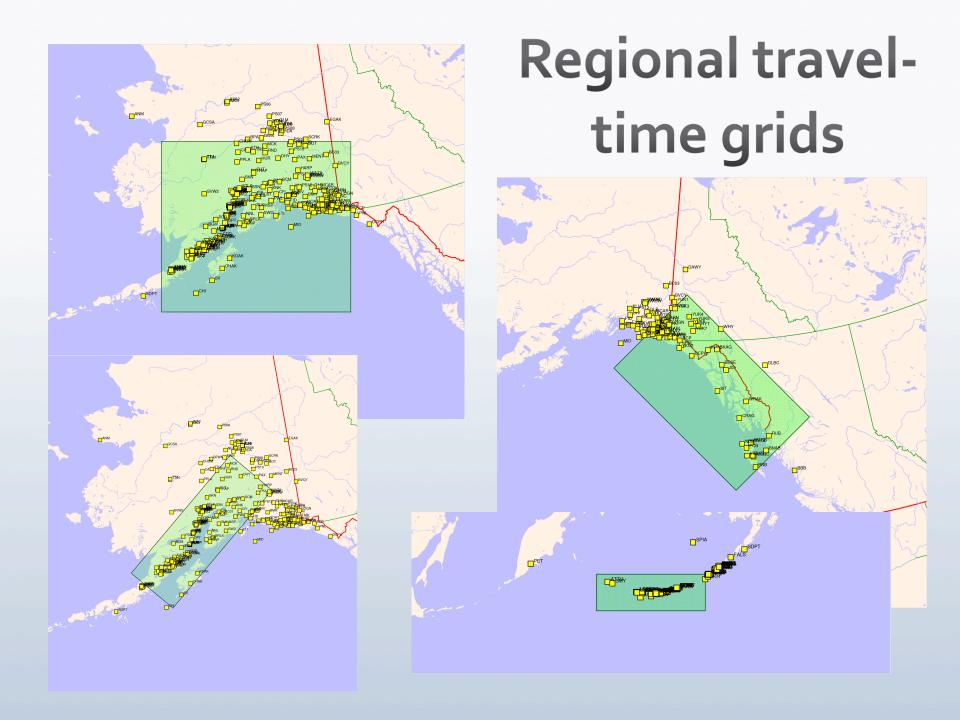

### Alaska regional seismic network




- 400+ stations
- Regional network:
- 1/3 is Earthquake Center (AK)
- 1/2 is Volcano
   Observatory (AV)
- Remaining 1/5 is
   Tsunami Warning Center
   (AT), GSN (UU/UI),
   USGS (US), and TA
   combined
- 2/3 of stations are digital broadband,
  ~1/3 of stations are short period analog

### **Tectonic of Alaska**





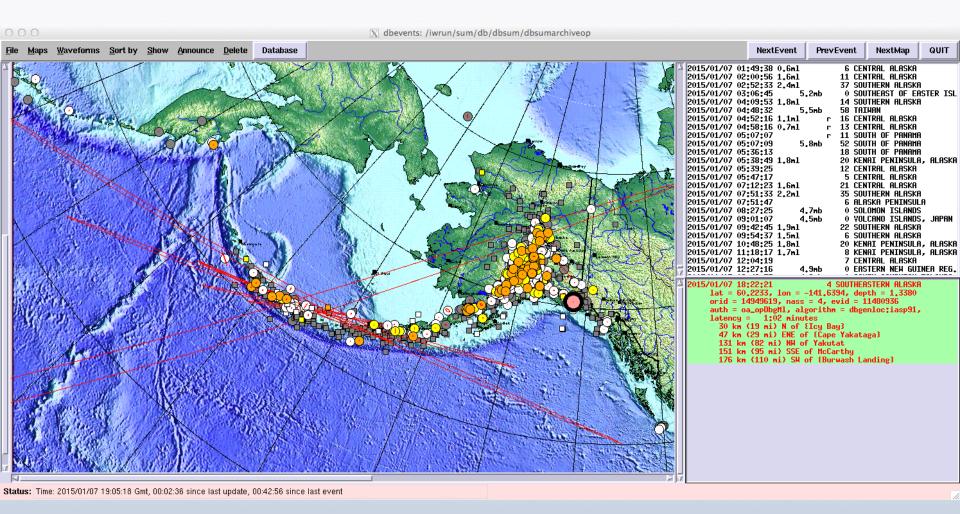

# Real-time data flow and processing

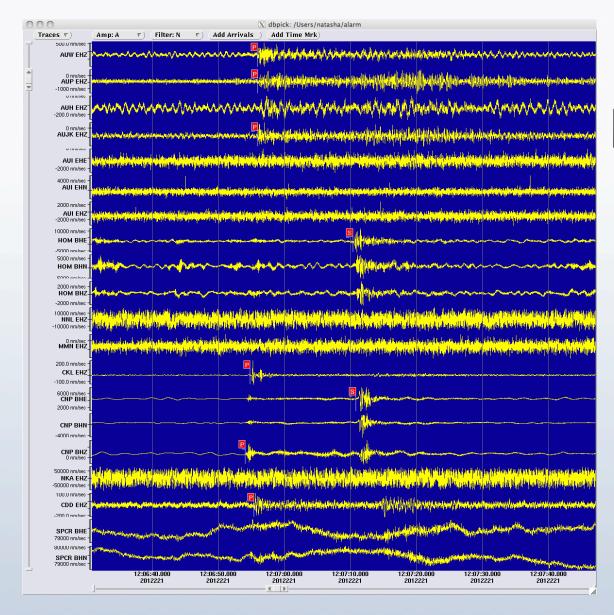


#### **Event associations**

- Regional travel-time grids are created to match natural distribution of seismicity across the monitoring region.
- We detect (associate) teleseismic events with utele grid using all regional and subset of global stations.
- Examples of parameters that can be tuned (*orbdetect.pf* and *orbassoc.pf*):
  - Clustering time window for concurring arrivals (depends on network aperture),
  - Number of arrivals within certain distance of epicenter (depends on station density),
  - Frequency of solution updates (through wall clock or number of detections),
  - Rules for when arrivals can be treated as P or S,
  - Upper limits on travel-time residuals.
- We run tests with different sets of parameters and choose those that produce minimal number of mis-associations for operational mode.




```
Following are required and are used as overall defaultsug
                    # Method for averaging (rms or filter)
ave_type rms
                   # short term average time window
sta_twin 1.0
                   # short term average minimum time for average
sta_tmin 1.0
                   # short term average maximum time gap
sta_maxtgap o.5
                   # long term average time window
lta_twin 10.0
                    # long term average minimum time for average
lta_tmin 5.0
                   # long term average maximum time gap
lta_maxtgap 4.0
                              # no detection if on time is less than this
nodet_twin
                    5.0
pamp
          500.0
                   # plot amplitude
                              # detection SNR threshold
thresh
                    4.0
threshoff 2.0
                    # detection-off SNR threshold
det_tmin 10.0
                    # detection minimum on time
det_tmax 500.0
                    # detection maximum on time
latency
                   3
                              # input packet pipe latency (per channel) in packets
                              # plot channel height in pixels
h
                   0
filter
                   none
                             # default filter
iphase
                    D
                             # default iphase for detections
maxfuturetime
                             # Maximum number of seconds after system wall clock time
                   600.0
goodvalue_min
                              # Minimum "good" data value
                   0.0
goodvalue_max
                              # Maximum "good" data value
                   0.0
         At least one default band must be set set up in the bands table
#
         parameter values override default values above for each band
         &Tbl{
bands
          &Arr{
                   sta_twin 1.0
                   sta_tmin 1.0
                   sta_maxtgap 0.5
                   lta twin 10.0
                   lta_tmin 5.0
                   Ita_maxtgap 4.0
                    pamp
                                        500.0
                    filter
                                        BW 1.0 4 0 0
                    iphase
```


| etstachanioc | .S & I DI{                      |
|--------------|---------------------------------|
| Akutan       |                                 |
|              | AV_AHB_EHZ out                  |
|              | AV_AKBB_BH[NEZ]                 |
|              | AV_AKGG_BH[NEZ]                 |
|              | AV_AKLV_BH[NEZ]                 |
|              | AV_AKMO_BH[NEZ]                 |
|              | AV_AKRB_BH[NEZ]                 |
|              | AV_AKS_EH[NEZ]                  |
|              |                                 |
|              | AV_AKSA_BH[NEZ]                 |
|              | AV_AKT_BH[NEZ]                  |
|              | AV_AKV_EHZ out                  |
|              | AT_AKUT_BH[NEZ]                 |
|              | AV_HSB_EHZ out                  |
|              | AV_LVA_EHZ                      |
|              | AV_ZRO_EHZ out                  |
| Augustine    |                                 |
| , logostine  | AV_AU22_BH[ENZ]                 |
|              | AV_AUCH_BH[ENZ]                 |
|              |                                 |
|              | AV_AUE_EHZ                      |
|              | AV_AUH_EHZ                      |
|              | AV_AUI_EH[NEZ]                  |
|              | AV_AUJA_BH[ENZ]                 |
|              | AV_AUJK_EHZ                     |
|              | AV_AUL_BH[ENZ]                  |
|              | AV_AUL_EHZ noisy                |
|              | AV AUNW EHZ                     |
|              | AV_AUP_EHZ                      |
|              | AV AUQ BH[ENZ]                  |
|              | AV AUW EHZ                      |
| Cleveland    | AV_AOW_LIIZ                     |
| Cieveianu    |                                 |
|              | AV_CLCO_BH[ENZ]                 |
|              | AV_CLEO_BH[ENZ]                 |
|              | AV_CLES_BH[ENZ]                 |
| Dutton       |                                 |
|              | AV_BLDY_EHZ                     |
|              | AV_DRR3_EHZ                     |
|              | AV_DT1_EHZ                      |
|              | AV_DTN_EHZ off 12/9/2011 noisy  |
|              |                                 |
| Regional     |                                 |
| Regional     | AV ADAC FUZ                     |
|              | AV_ADAG_EHZ                     |
|              | IU_ADK_BH[NEZ]                  |
|              | IU_ADK_BH[12Z]_00               |
|              | IU_ADK_BH[12Z]_10               |
|              | AV_AMKA_BH[ENZ]                 |
|              | AK_ANM_BH[NEZ]                  |
|              | AK_ATKA_BH[NEZ]                 |
|              |                                 |
| Teleseismic  |                                 |
|              | II*_(BHZ BHZ_oo)                |
|              | IU*_(BHZ BHZ_00)                |
|              | CI*_(BHZ BHZ_00)                |
|              |                                 |
|              | CU*_(BHZ BHZ_oo)                |
|              | NAME OF TAXABLE PROPERTY.       |
| TA Alaska aı |                                 |
|              | TA_A21K_BH[ENZ] TA_EPYK_BH[ENZ] |
|              | TA_EPYK_BH[ENZ]                 |
|              | TA_I23K_BH[ENZ]                 |
|              | TA_K27K_BH[ENZ]                 |
|              |                                 |

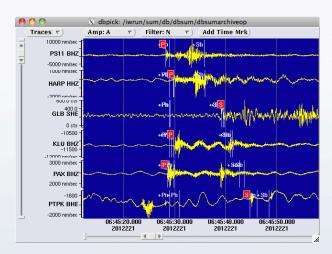
```
# Parameter file for orbgrassoc
process_time_window
                           600.0
                                         # Main detection processing time window
                                         # how often to do detection processing, in detections
process_ncycle
                           30
                                         # how often to do detection processing, in time
process_tcycle
                           0.0
process_timeout
                           300
                                         # timeout for processing detections
grid_params &Arr{
             scak shal & Arrf
             nsta_thresh &Tbl{  # Minimum allowable number of stations
                                                       # expressed as a function of maximum
                                                       # source-receiver distance
                           2.0 4
                           4.0 6
                           6.0 8
                           10.0 10
                           180.0 20
#
             nsta_thresh 6
                                         # Minimum allowable number of stations
#
             changed on 20110311 by Mitch
             number threads 16 # Number of simultaneous threads to use for this grid
             number_threads 10 # Number of simultaneous threads to use for this grid
             nxd
                                         11
                                                       # Number of east-west grid nodes for depth scans
                                                       # Number of north-south grid nodes for depth scans
             nvd
                                         11
             cluster_twin 3.0
                                         # Clustering time window
             try_S
                                                       # yes = Try observations as both P and S
                                                       # no = Observations are P only
                                                       # Drop if solution is on the edge of the grid
             drop_if_on_edge
                                         yes
             associate_S yes
                                         # yes = Try to associate observations as both P and S
             reprocess_S yes
                                         # yes = Reprocess when new S-associations found
             phase sifter r
             algorithm scak_shal
             P deltim 0.1 # Default deltim value for arrival table rows for P arrivals
             S_deltim 0.2 # Default deltim value for arrival table rows for S arrivals
             P_channel_sifter ..ZJ..Z_oo # Only do P associations with channels that match this expression
             S_channel_sifter .. [NE12] .. [NE12] oo # Only do S associations with channels that match this expression
                                         #This is a time window in seconds for culling closely
              # spaced detections before initial P association processing
             priority
             sta_weight_radius
                                         1.0
             use dwt
                          yes
    dwt dist near 2.0
    dwt_wt_near 1.0
    dwt_dist_far 6.o
    dwt_wt_far o.1
   dwt_tbl &Tbl{ # distance weights can be input using a table or with
       o.o 2.o # the dwt_dist_near, ... parameters
                           4.0 1.0
                           100 00
             use_dwts yes # yes = Use source receiver distance weighting factor (or no)
                                                       # this one is for S associations
   dwts_dist_near 2.0
   dwts_wt_near 1.0
   dwts_dist_far 4.0
   dwts_wt_far o.o
             closest_stations 40 # Use only the 20 closest stations to a particular source
             sta_defining_pxmin o.o # Use only stations that are to the east of the
                                                       # west edge of the search grid for defining phases
             sta_defining_pxmax 100.0# Use only stations that are to the west of the
                                                       # east edge of the search grid for defining phases
             sta_defining_pymin o.o # Use only stations that are to the north of the
#
                                                       # south edge of the search grid for defining phases
             sta_defining_pymax 100.0# Use only stations that are to the south of the
                                                                     north edge of the search grid for defining phases
             nondefining_association_P_maxresid 5.0 # maximum residual for non-defining P arrival associations
             nondefining_association_S_maxresid 5.0 # maximum residual for non-defining S arrival associations
                           rundbgenloc # Run this relocation script to refine final solution
             use_only_relocation yes # If relocation converges, just output the relocation
```

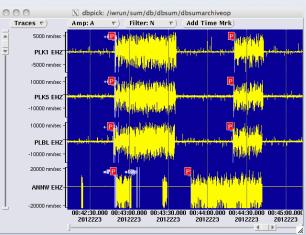
```
tele_uni &Arr{
              nsta_thresh &Tbl{ # Minimum allowable number of stations
                                                        # expressed as a function of maximum
                                                        # source-receiver distance
                           4.0 6
                           6.0 8
                           180.0 10
             nsta_thresh 12
                                          # Minimum allowable number of stations
             changed on 20110311 by Mitch
              number_threads 16 # Number of simultaneous threads to use for this grid
             number_threads 8 # Number of simultaneous threads to use for this grid
             cluster_twin 4.0
                                          # Clustering time window
                                                        # yes = Try observations as both P and S
             try_S
                                                        # no = Observations are P only
                                                        # Drop if solution is on the edge of the grid
             drop_if_on_edge
             associate S yes # yes = Try to associate observations as both P and S
              reprocess_S yes # yes = Reprocess when new S-associations found
             phase_sifter r
              algorithm teleseismic
              priority
              P deltim 0.1 # Default deltim value for arrival table rows for P arrivals
             S deltim 0.2 # Default deltim value for arrival table rows for S arrivals
             P_channel_sifter ..Z|..Z_oo # Only do P associations with channels that match this expression
              S_channel_sifter ..[NE12]|..[NE12]_oo # Only do S associations with channels that match this
expression
             P_det_tmin 10
                                          # This is a time window in seconds for culling closely
              # spaced detections before initial P association processing
              sta_weight_radius
                                          5.0
             use dwt
   dwt_tbl &Tbl{
      0.0 2.0
     20 10
     10.0 0.5
     90.0 0.1
             use_dwts
                           no
   dwts_dist_near 2.0
   dwts_wt_near 1.0
   dwts_dist_far 4.0
   dwts_wt_far o.o
              closest_stations 40 # Use only the 20 closest stations to a particular source
             sta_defining_pxmin o.o # Use only stations that are to the east of the
                                                        # west edge of the search grid for defining phases
              sta_defining_pxmax 100.0# Use only stations that are to the west of the
                                                        # east edge of the search grid for defining phases
             sta_defining_pymin o.o # Use only stations that are to the north of the
                                                        # south edge of the search grid for defining phases
              sta_defining_pymax 100.0# Use only stations that are to the south of the
                                                        # north edge of the search grid for defining phases
              nondefining_association_P_maxresid 3.0 # maximum residual for non-defining P arrival associations
             nondefining_association_S_maxresid 5.0 # maximum residual for non-defining S arrival associations
                           rundbgenloc # Run this relocation script to refine final solution
              use_only_relocation yes # If relocation converges, just output the relocation
```

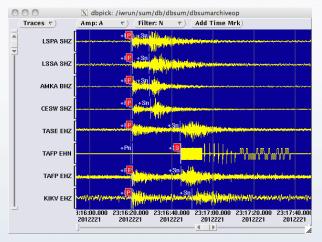
### Real-time earthquake map

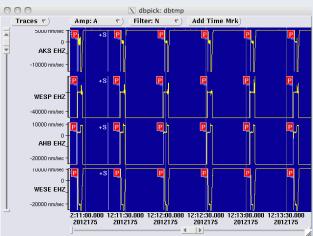





# Problem: Data quality

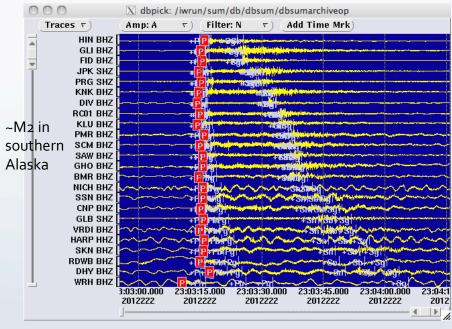

Ex.: ~M2 earthquake in southern Alaska, intermediate depth.

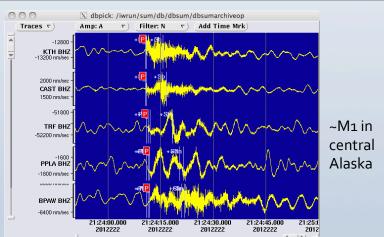

Multiple stations are out. Problem with analog telemetry: even when sensor is not working, the data is still being transmitted.

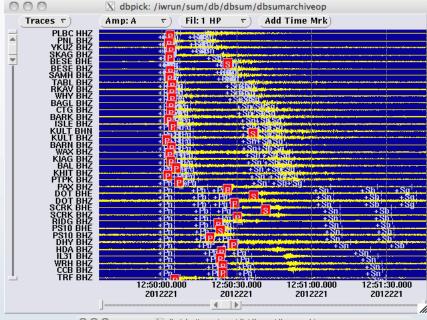

We carefully monitor state of health of our stations and exclude bad stations from auto-detector list.

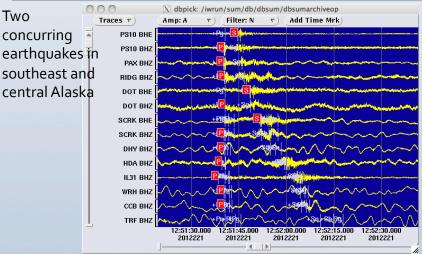
# Problem: Data quality





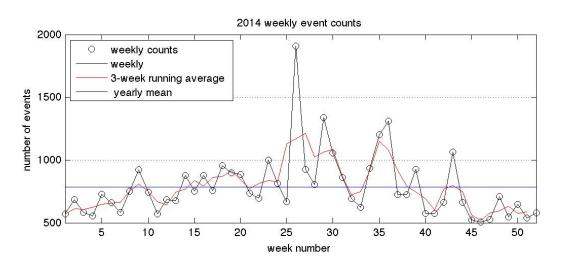



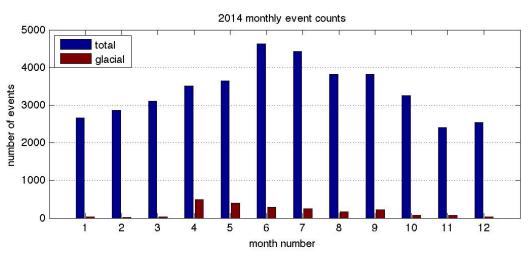


- Despite our best efforts to monitor data quality, bad picks still make it into earthquake associations.
- We can correct these events through analyst reviews and event deletes.
- Or we can be proactive and tune our associator so that it produces minimal amount of mis-locations.

### **Automatic detection examples**

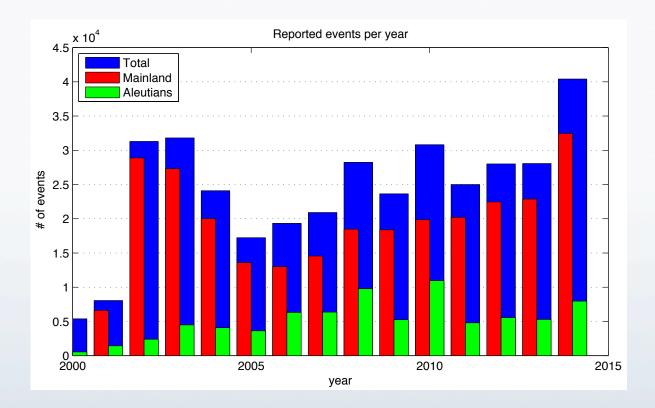







|                                                                              |                                                             |       |                           | Performance Standard        |          |        |  |
|------------------------------------------------------------------------------|-------------------------------------------------------------|-------|---------------------------|-----------------------------|----------|--------|--|
| Perfor-<br>mance<br>Area                                                     | Metric (explanations below)                                 | Units | Hi-Risk<br>Urban<br>Areas | Mod-High<br>Hazard<br>Areas | National | Global |  |
| Seismic Monitoring/Strong Earthquake Shaking                                 |                                                             |       |                           |                             |          |        |  |
| 1.1                                                                          | Magnitude Completeness Level                                | M     | 2.0                       | 2.5                         | 3.0      | 4.5    |  |
| 1.2                                                                          | Epicenter Uncertainty                                       | km    | 2                         | 5                           | 10       | 20     |  |
| 1.3                                                                          | Depth Uncertainty                                           | km    | 4                         | 10                          | 10       | 20     |  |
| 1.4                                                                          | Magnitude Uncertainty for M≥ 4.5                            | M     | ±0.2                      |                             |          |        |  |
| 1.5                                                                          | Magnitude Estimation Accuracy<br>(Md, Ml, Mo, Mb) for M<4.5 |       | to be determined          |                             |          | NA     |  |
| 1.6                                                                          | Network average station uptime                              | %     | 90                        |                             |          |        |  |
| 1.7                                                                          | Waveform Data Return Rate<br>for Triggered data             | %     | 95                        |                             |          | NA     |  |
| Real-Time/Automated Product Generation                                       |                                                             |       |                           |                             |          |        |  |
| 2.1                                                                          | Hypocenter Post Time                                        | min.  | 2                         | 4                           | 6        | 15     |  |
| 2.2                                                                          | Magnitude Post Time                                         | min.  | 3                         | 4                           | 6        | 15     |  |
| 2.3                                                                          | Moment Tensor Post Time<br>M≥4.5 (M≥5.5 non-US)             | min.  | 15                        |                             | 30       |        |  |
| 2.4                                                                          | Initial Internet Quick Report Post Time M≥3.5               | min.  | 15                        | 15                          | 30       | NA     |  |
| 2.5                                                                          | ShakeMap Post Time                                          | min.  | 5                         | 10                          | 15       | 20     |  |
| Preparation of Seismologist-Reviewed Products for<br>Significant Earthquakes |                                                             |       |                           |                             |          |        |  |
| 3.1                                                                          | Reviewed Hypocenter Post Time                               | min.  | 10                        |                             |          | 20     |  |
| 3.2                                                                          | Reviewed Magnitude Post Time                                |       | 10                        |                             |          | 20     |  |
| 3.3                                                                          | Reviewed Moment Tensor Post Time<br>M≥4.5 (M≥5.5 non-US)    | min.  | 30                        |                             |          |        |  |
| 3.4                                                                          | Reviewed Internet Quick Report Post Time                    | min.  | 30                        | 45                          | 60       | NA     |  |
| 3.5                                                                          | Reviewed ShakeMap Post Time                                 | min.  | 15                        | 30                          | 30       | 60     |  |
| Data Exchange Between ANSS Networks                                          |                                                             |       |                           |                             |          |        |  |
| 4.1                                                                          | Waveform Availability Timeliness                            | sec.  | 30                        |                             | 60       |        |  |
| 4.2                                                                          | Amplitude Availability Timeliness                           | sec.  | 2. 30                     |                             | 60       |        |  |
| 4.3                                                                          | Phase Picks Availability Timeliness                         | sec.  | 30                        |                             | 60       |        |  |
| Data Arc                                                                     | chiving and Public Distribution                             |       |                           |                             |          |        |  |
| 5.1                                                                          | Availability of Waveforms to External Users                 |       | 60                        |                             |          |        |  |
| 5.2                                                                          | Availability of Event Bulletin (parametric data)            | min.  | nin. 60                   |                             |          | 120    |  |
| 5.3                                                                          | Metadata availability (current)                             |       | 99                        |                             |          |        |  |
| 5.4                                                                          | 5.4 Data import into archive                                |       | to be determined          |                             |          |        |  |


- AEIC is participating member of the ANSS (Advanced National Seismic Network)
- We report on network's performance yearly, in accordance with our funding requirements.
- We meet or exceed most of the requirements, especially for reporting latency and earthquake location errors.

# 2014 earthquake counts





- A total of 40,686 events reported in 2014
- Previous record was ~33K events in 2003, following the M7.9 Denali fault earthquake
- ~7K are various aftershocks
- ~2K are glacial events



- We reported over 40,000 seismic events in 2014, which is about 40% increase relative to 2012 and 2013
- Nearly 7,000 of the reported events are various aftershocks
- About 2,000 are glacial events



Seismic station CRQ in St.Elias Mnts, southern Alaska. Photo by Dara Merz, Alaska Earthquake Center