3Drelocate (Alpha)

_

Towards a Contributed Software Package for Earthquake Location Inversions Using 3D Velocity Models

Amir Allam – UAF Malcolm White - UCSD

Overview

- Basic components
- Methodology
- Basic operation
- Test results
- Future development

Purpose

 The purpose of this software package is to leverage 3D velocity models in earthquake location inversions

Basic Components

- generate_ttimes_fm3d
- 3Drelocate

loctools3d.core_tools

fm3d – Nick Rawlinson (University of Aberdeen)

Basic Components

- generate_ttimes_fm3d
 - Command line tool
 - An I/O wrapper around fm3d
 - Builds source-to-station travel-time lookup files, accounting for 3D seismic velocity structure
- 3Drelocate
 - Command line tool
 - Interfaces Antelope database with inversion algorithm in loctools3d.core_tools
 - Can be replaced with interface to any data format

Basic Components

- loctools3d.core_tools
 - Python module
 - Implements location inversion algorithm
 - Implements internal data structures to allow for interface layer to be written for any data format
- fm3d (N. Rawlinson)
 - 3D wave-front tracking software
 - Accounts for 3D seismic velocity structure
 - Essential third-party component

Input P-wave arrival time observations

Brute force grid search

Sub-grid inversion

Output location

Want to find source location and time

$$\vec{u} = \langle x, y, z, t_0 \rangle$$

- Brute force grid search
 - Initial trial solution (location, time)
- Sub-grid inversion
 - Iterative small updates to trial solution

- Input P-wave arrival time observations
 - 3Drelocate iterates over events in an Antelope database and extracts event data to be passed to loctools3d.core_tools inversion algorithm
 - Extensible development model allows for inversion algorithm to be interfaced with arbitrary data formats

Brute force grid search

where

$$t_0^j = \frac{1}{n} \sum_{i=1}^n t_{obs}^i - \tau_{pred}^{i,j}$$

 t_0^j is the estimated origin time for a trial origin at the jth node

 t_{obs}^{i} is the observed arrival time at the ith station

 $au_{pred}^{i,j}$ is the predicted travel-time to the ith station from the jth node

- Brute force grid search
 - Define residual at the jth node for the ith station

$$r^{i,j} \equiv t^{i}_{obs} - t^{i,j}_{pred}$$
$$r^{i,j} \equiv t^{i}_{obs} - (t^{j}_{0} + \tau^{i,j}_{pred})$$

– Define the "misfit"

$$\sigma^{j} = \sum_{i=1}^{n} \left| r^{i,j} \right|$$

- Brute force grid search
 - Grid node with smallest misfit is best fitting node

$$\min_{j} \left(\sigma^{j} \right) = j *$$

Best fitting grid node yields trial solution

$$j^*, t_0^*$$
 or $\vec{u}^* = \langle x^*, y^*, z^*, t_0^* \rangle$

- Sub-grid inversion
 - estimate origin time based on best-fitting node

$$t_0^* = \frac{1}{n} \sum_{i=1}^{n} \left(t_{obs}^i - \tau_{pred}^{i,j^*} \right)$$

define residual of the ith observation

$$r^{i} \equiv t_{obs}^{i} - \left(t_{0} * + \tau_{pred}^{i,j*}\right)$$

- Sub-grid inversion
 - Approximate the gradient of the travel-time field, for the ith station, at the position of the best fitting grid node, $\langle x^*, y^*, z^* \rangle$

$$\nabla \tau_{i} = \left\langle \frac{\partial \tau_{i}}{\partial x}, \frac{\partial \tau_{i}}{\partial z} \right\rangle$$

$$\frac{\partial \tau_{i}}{\partial x} \approx \frac{1}{2} \left[\left(\tau_{x^{*}, y^{*}, z^{*}} - \tau_{x^{*}-1, y^{*}, z^{*}} \right) + \left(\tau_{x+1^{*}, y^{*}, z^{*}} - \tau_{x^{*}, y^{*}, z^{*}} \right) \right]$$

$$\frac{\partial \tau_{i}}{\partial y} \approx \dots$$

$$\frac{\partial \tau_{i}}{\partial z} \approx \dots$$

- Sub-grid inversion
 - A small change in the origin location results in a change in the travel-time given by

$$\Delta \tau^i = \nabla \tau^i \cdot \vec{\Delta x}$$

where $\Delta \vec{x}$ is the displacement vector

 The change in arrival time at the ith station based on an updated solution can be written

$$\Delta t_{pred}^i = \nabla \tau^i \cdot \Delta \vec{x} + \Delta t_0$$

$$\Delta t_{pred}^{i} = \left\langle \nabla \tau^{i}, 1 \right\rangle \cdot \Delta \vec{u}$$

- Sub-grid inversion
 - Requiring

$$\Delta t_{pred}^{i} = -r^{i}$$

- Yields residuals for updated solution given by

$$r'^{i} = t^{i}_{obs} - (t^{i}_{pred} + \Delta t^{i}_{pred})$$

$$r'^{i} = t^{i}_{obs} - (t^{i}_{pred} - r^{i})$$

$$r'^{i} = r^{i} - r^{i}$$

$$r'^{i} = 0$$

- Sub-grid inversion
 - set up the linear system of i equations in 4 unknowns

$$\left\langle \nabla \tau^i, 1 \right\rangle \cdot \Delta \vec{u} = -r^i$$

– take $\Delta \vec{u}$ to be the least-squares solution to this set of equations.

- Sub-grid inversion
 - The updated solution is

$$\vec{u}^* \rightarrow \vec{u}^* + \Delta \vec{u}$$

 Iterate until change in location falls below threshold

Basic Operation

I) Build travel-time lookup files

generate_ttimes_fm3d

II) Invert for origin using static travel-time files

3Drelocate

Reciprocity Principle

O(1) executions

Evid: 357863 - Delta: 0.731

Future Work / Improvements

- Account for S-wave observations in inversion
- Optimization
 - Memory usage
 - Memory mapping of travel-time lookup files?
 - Travel-times are currently being loaded into memory for speed
 - CPU cycles