## USArray and CEUSN



Frank Vernon

Scripps Institution of Oceanography University of California, San Diego

UCSD AUG

14 January 2015





- Sensor: 3 component Broadband seismometer & auxiliary sensors
- Datalogger & local data storage
- Power & data telemetry



TA Station 345A, MS





## USArray TA 2004-2014



## **TA Performance**



earth

Station noise highly uniform and quite low for temporary installations



## **TA Performance**

Network availability typically exceeds 98%





## **Contiguous Time Series**



## **Global Seismicity**





12,221 events with M  $\geq$  5.0 recorded by USArray from April 2004 to November 2013

# **US** Seismicity





## Tomography Before TA





▲ **Figure 1.** (A) Model made by piecing together local tomography studies from Humphreys and Dueker (1994) and inverting with global data set (after Dueker *et al.* 2001). (B) Global *S*-wave model from surface wave diffraction (Ritzwoller *et al.* 2002). (C) Global *P*-wave model using finite frequency kernels (Montelli *et al.* 2004). (D) Global *S*-wave travel-time model (Grand 2002).

# Tomography Burdick et al. 2014





Depth 300 km

±1.00%



Depth 500 km















## Tomography Burdick et al. 2014



ear

## Tomography Burdick et al. 2014





## **Daily PDF Modes**



## **Daily PDF Modes**

Daily PDF Mode Power Timelines TA 20-Day-Running Mean BHN



7



## Histograms





## Histograms





## Histograms



## Paulatuk C36M Sachs Harbor A36M



earth scop

A dramatic seasonal improvement of noise performance at freeze up, of interest to sea-ice modelers.



## PFO PY Posthole Test





## **PY-TPFO** Comparison

## Station PDF Residual Medians BHZ





## **PY-TPFO** Comparison

### Station PDF Residual Medians BH[E/N]



## Status of TA Sites October 2014







## Basic Description of Buried Sensor Design for AK

- Sensor: 3 component Broadband seismometer & auxiliary sensors
- Datalogger & local data storage
- Power & data telemetry



#### N25K Seismic Station





## **Alternative Enclosure**

Contents: (4) 100AH AGM Lead-Acid (6) 180AH LiFePO4 Datalogger Charge controller local data storage Comms terminal

410kg 30 x 44 x 28 inches







earth scope

- Broadband seismic coverage, 1 and 40 sps
- Two surface barometric pressure channels at 1 sps
  - MEMS
  - Setra 278
- Hyperion Infrasound microphone, 1 sps
- Vaisala WXT520 Weather Stations, 1 sps
  - 25 sites
  - 265 additional sites possible if funding found



#### Objective:

Deliver 40 Mbytes/day, with latencies under 4-6 hours. Need not be a continuous connection, but that is preferred when power and cost allow it. Must be under 2 Watts average daily power. 12 Gb/day compared with about 23 Gb/day today.

Can send data as file transfers or streaming packets or a combination to obtain highest compression.

Options:

Freewave and Cell where available, village wifi HughesNet VSAT InMarSat M2M BGAN Hughes 9502 terminal Iridium DoD RUDICs XEOS XI-100B OmniSpace

~ \$1780K annually

11-15W full transmit at 400kbps 1W standby, SMS wakeup 0.1W sleep \$1000





### **BGAN I4 EIRP Elevation**





12 x 12 x 2 inch flat plate 20 degree requirement

Tested reception at all Reconned sites in north.

Limitation is cost- \$1k/mo 350kbps bandwidth 2Gbyte/mo throughput

RED Lines = 10 Degree elevation = minimum recommended for BGAN PINK Lines = Regional Beams of APAC and AMER satellites = Should Work BLUE Lines = Narrow Beams = Hard to reach This map depicts Inmarsat's expectations of coverage, but does not represent a guarantee of service. The availability of service at the edge of coverage areas fluctuates depending on various conditions.



## HughesNet VSAT

- Works at high latitudes (north of Toolik)
- High power 30 W
- Bandwidth can support two stations, usually one.
- Low Cost \$90/mo
- Reliability in winter, and to maintain pointing.

TA.K27K, Chicken PBO VSAT & Hut



## **Iridium Rudics**



- XI-100B modem, 5 Watts
- Max rate 2400 bps, 24Mbyte/day
- Lots of link cycles
- Cost \$290/mo

- Omnidirectional antenna
- Rudics tunnel protocol



## OmniSpace



- Custom Terminal -- S band
- Boeing GEO satellite in MEO
- Max rate of 128kbps
- (3) 30 min links per day
- Single downlink Brewster WA
- Cost \$400/mo for 1.2Gbyte

- Omnidirectional antenna
- VPN tunnel







## Pressure Sensor Response

• Overlapping pass-bands provides continuous coverage from DC to 20 Hz





## TA and NWS coverage







## AK Met data

- One week of data (12/30/2014 to 1/05/2015)
- Setra 278 Barometer

1 sps

# Summary

- High Quality Data
  - High data return
  - Sensor orientation
  - Sensor calibration
  - Accurate timing across all sensors ~ 1 microsecond
  - Low noise
  - Continuous time series.
  - Multidisciplinary observations
- Science Returns
  - Improved seismicity observations
  - Improved body wave and surface wave tomography
  - Ambient noise tomography
  - Back propagation for large event rupture inversion
  - Atmospheric research
- Science Opportunities
  - Crustal compliance from atmospheric pressure and seismic data multi taper transfer functions
  - Develop or improve frequency domain approach to ambient noise analysis
  - Multidisciplinary analysis

٠

- > 99.5%
- $\sim 2^{\circ}$  for 1 sigma
- ~ 2% for 1 sigma
- majority of stations > 9 months
- · High density spatial observations spatially unaliased in lower frequency bands

# **CENTRAL & EASTERN** U.S. NETWORK

USArray Transportable Array Evolving into the Central and Eastern United States Network (CEUSN)



# USArray TA

# (c) 2004 - 2014 Array Network Facility, http://anf.ucsd.edu km 500 Network Legend ↓ LCSN [1] ▲ NN (UN Reno) [0] ▲ POLARIS [33] ▲ TA (USArray) [284] ◆ US ANSS [49] ▲ UUSS (Uni. Utah) [0] km 2014 12

CENTRAL & EASTERN U.S. NETWORK

# TA Legacy of Permanent Stations





# Brief History

- TA Site Selection Working Group set about selecting and prioritizing target stations
  - Chaired by Harley Benz, USGS
  - Included representation of USGS, US NRC, DOE, regional network operators, state geologists, academic seismologists
- TASSWG report prioritized 200 stations
  - Proximity to seismic hazard (and where additional coverage was required)
  - Proximity to critical infrastructure (e.g., nuclear power plants)
  - General areal coverage
- Target station configuration
  - Broadband continuous telemetry at 100, 40, 1 sps
  - Triggered recording at 200 sps
  - Some sites with 3 comp strong motion at 100 sps continuous telemetry
  - Sites retain atmospheric sensors





# Current Status

- All CEUSN stations are in the ground
  - Some in CEUSN configuration; Network code N4
  - Some still as part of TA
- Westernmost stations that had been removed are being re-constructed and reinstalled
- Stations west of footprint that were not removed are being reconfigured
- All other CEUSN stations operating as part of active TA footprint. These will be reconfigured at the point they would otherwise be removed
- USGS intent to work towards obtaining budget increase necessary to operate and maintain the CEUSN



# CENTRAL & EASTERN U.S. NETWORK Current N4-TA



![](_page_40_Picture_2.jpeg)

RIS earthscope

![](_page_40_Picture_4.jpeg)

![](_page_40_Picture_5.jpeg)

### CENTRAL & EASTERN U.S. NETWORK

![](_page_41_Figure_1.jpeg)

CENTRAL & EASTERN U.S. NETWORK State of Health

#### CENTRAL & EASTERN U.S. NETWORK

about contact

HOME DEPLOYMENT STATUS EARTHQUAKES DATA

Seismic Monitoring FROM THE MISSISSIPPI RIVER TO THE ATLANTIC OCEAN

#### Real-time Station Status

#### Original View Masses View

Sort on station names THEN bring up any problems on: RunTime, Latency, Clock Quality, Buffer Full, 24h Link Cycles

Last update to information on table: 00:01:09

| Station | Reserve<br>battery | 24h R<br>Bytes | 24h W<br>Bytes | Comms<br>Effic | Clock<br>Drift | GPS<br>Latency | Current | Latency  | VO Rate   | Temp | Voltage | 24h<br>gaps | GPS<br>quality | GPS<br>status | Clock<br>Quality | 24h IP<br>Cycles | 24h Link<br>Cycles | 24hPOC | 24h<br>Reboots | Buffer<br>Full | RunTime   | Thruput |
|---------|--------------------|----------------|----------------|----------------|----------------|----------------|---------|----------|-----------|------|---------|-------------|----------------|---------------|------------------|------------------|--------------------|--------|----------------|----------------|-----------|---------|
| N4_T47A | 1                  | 72.3 Mb        | 1,1 Mb         | -              | 0              | 00:00:00       | 7.4 mA  | 00:04:56 | 0.0 Kb/s  | 17 C | 12.8 V  | 00:00:00    | elck 3d lick   | -             | 100%             | 0                | 12                 | 0      | 0              | 0%             | -00:04:09 | 0.0     |
| N4_)40B | 1                  | 68.1 Mb        | 1.1 Mb         | 100%           | 0              | 00:00:00       | 7.6 mA  | 00:00:03 | 6.7 Kb/s  | 11 C | 13.1 V  | 00:00:00    | elck 3d        | -             | 99%              | 0                | 1                  | 0      | 0              | 0%             | 22:45:18  | 1.0     |
| N4_352A | 1                  | 96,1 Mb        | 1.4 Mb         | 100%           | 0              | 00:00:00       | 6.1 mA  | 00:00:03 | 7.3 Kb/s  | 26 C | 12.0 V  | 00:00:00    | elck 3d ilck   | -             | 100%             | 0                | 36                 | 18     | Ó              | 0%             | 15:58:06  | 1.0     |
| N4_D41A | 1                  | 71.0 Mb        | 1.1 Mb         | 100%           | 1              | 00:00:00       | 11.8 mA | 00:00:03 | 6.5 Kb/s  | 6 G  | 12.6 V  | 00:00:00    | eick 3d        | -             | 100%             | 0                | 7                  | 0      | 0              | 0%             | 00:58:15  | 1.0     |
| N4_L40A | 1                  | 80.9 Mb        | 1.2 Mb         | 100%           | 0              | 00:00:00       | 5.7 mA  | 00:00:03 | 7.2 Kb/s  | 14 C | 12.8 V  | 00:00:00    | elck 3d        | -             | 100%             | 0                | 42                 | 12     | 0              | 0%             | 05:46:16  | 1.0     |
| N4_N38B | 1                  | 79.6 Mb        | 1.3 Mb         | 100%           | -2             | 00:00:00       | 6.0 mA  | 00:00:03 | 7.4 Kb/s  | 14 C | 12.8 V  | 00:00:00    | elck 3d        | -             | 100%             | 0                | 147                | 26     | 0              | 0%             | 13:49:48  | 1.0     |
| N4_S51A | 1                  | 86,9 Mb        | 1.2 Mb         |                | -2             | 00:00:00       | 7.8 mA  | 00:02:44 | 1.5 Kb/s  | 19 C | 12.9 V  | 00:00:00    | elck 3d        | -             | 100%             | 0                | 19                 | 1      | 0              | 0%             | 00:01:12  | 0.0     |
| N4_T35B | 1                  | 75.2 Mb        | 1.1 Mb         | 100%           | 0              | 00:00:00       | 6.0 mA  | 00:00:03 | 7.1 Kb/s  | 19 C | 13.8 V  | 00:00:00    | elck 3d        |               | 100%             | 0                | 8                  | 2      | 0              | 0%             | 05:36:17  | 1.0     |
| N4_V51A | 1                  | 87.5 Mb        | 1.2 Mb         | 100%           | 1              | 00:00:00       | 6.4 mA  | 00:00:05 | 8.1 Kb/s  | 19 C | 13.3 V  | 00:00:00    | elck 3d        |               | 100%             | 0                | 26                 | 151    | 0              | 0%             | 00:33:36  | 1.0     |
| N4_Z35B | 1                  | 80.2 Mb        | 1.2 Mb         | 100%           | 0              | 00:00:00       | 5.6 mA  | 00:00:03 | 6.9 Kb/s  | 23 C | 13.3 V  | 00:00:00    | elck 3d        |               | 100%             | 0                | 12                 | 7      | 0              | 0%             | 03:03:05  | 1.0     |
| N4_Z51A | 1                  | 76.8 Mb        | 1.3 Mb         | 99%            | 0              | 00:00:00       | 5.4 mA  | 00:00:10 | 7.4 Kb/s  | 20 C | 13.8 V  | 00:00:00    | elck 3d        | -             | 100%             | 0                | 89                 | 5      | 0              | 096            | 08:23:21  | 1.0     |
| N4_060A | 1                  | 83.2 Mb        | 1.2 Mb         | 100%           | 0              | 00:00:00       | 5.3 mA  | 00:00:03 | 7.9 Kb/s  | 31 C | 13.3 V  | 00:00:00    | elck 3d        | -             | 100%             | 0                | 1                  | 2      | 0              | 0%             | 19:25:10  | 1.0     |
| N4_061Z | 1                  | 73.5 Mb        | 1.1 Mb         | 100%           | 0              | 00:00:00       | 5.4 mA  | 00:00:03 | 7.1 Kb/s  | 34 C | 13.3 V  | 00:00:00    | elck 3d        | -             | 100%             | 0                | 1                  | 0      | 0              | 0%             | 19:20:28  | 1.0     |
| N4_143B | 1                  | 72.2 Mb        | 1.1 Mb         | 100%           | D              | 00:00:00       | 5.3 mA  | 00:00:03 | 6.7 Kb/s  | 21 C | 13.5 V  | 00:00:00    | elck 3d        | -             | 100%             | 0                | 1                  | 0      | 0              | 0%             | 21:38:03  | 1.0     |
| N4_146B | 1                  | 75,8 Mb        | 1.1 Mb         | 99%            | 0              | 00:00:00       | 5.6 mA  | 00:00:03 | 7.0 Kb/s  | 23 C | 12.8 V  | 00:00:00    | elck 3d        | -             | 100%             | 0                | 1                  | 0      | 0              | 0%             | 06:05:34  | 1.0     |
| N4_152A | 1                  | 77.3 Mb        | 1.1 Mb         | 100%           | 0              | 00:00:00       | 5.2 mA  | 00:00:03 | 7.2 Kb/s  | 21 C | 13.5 V  | 00:00:00    | elck 3d        | -             | 100%             | 0                | 1                  | 0      | 0              | 0%             | 03:10:50  | 1.0     |
| N4_154A | 1                  | 74,3 Mb        | 1.1 Mb         | 100%           | 0              | 00:00:00       | 5.7 mA  | 00:00:03 | 6.9 Kb/s  | 24 C | 12.6 V  | 00:00:00    | elck 3d        | -             | 100%             | 0                | 2                  | 0      | 0              | 0%             | 00:27:02  | 1.0     |
| N4_237B | 1                  | 76,3 Mb        | 1.1 Mb         | 100%           | D              | 00:00:00       | 7.1 mA  | 00:00:03 | 6.8 Kb/s  | 23 C | 13.5 V  | 00:00:00    | elck 3d        | -             | 100%             | 0                | 1                  | 0      | 0              | 0%             | 15:34:25  | 1.0     |
| N4_250A | 1                  | 75,8 Mb        | 1.2 Mb         | 99%            | 0              | 00:00:00       | 5.6 mA  | 00:00:03 | 7.1 Kb/s  | 23 C | 13.9 V  | 00:00:00    | elck 3d        | -             | 100%             | 0                | 3                  | 0      | Ó              | 0%             | 05:58:45  | 1.0     |
| N4_255A | 1                  | 69.1 Mb        | 1.1 Mb         | 100%           | 0              | 00:00:00       | 5.9 mA  | 00:00:03 | 6.4 Kb/s  | 23 C | 12.4 V  | 00:00:00    | elck 3d        |               | 100%             | 0                | 1                  | 0      | 0              | 0%             | 18:42:57  | 1.0     |
| N4_257A | 1                  | 109.3 Mb       | 1.6 Mb         | 100%           | 0              | 00:00:00       | 6.8 mA  | 00:00:03 | 10.2 Kb/s | 27 C | 13.2 V  | 00:00:00    | elck 3d        | -             | 100%             | 0                | 1                  | 0      | 0              | 0%             | 08:58:11  | 1.0     |
| N4_342B | 1                  | 76.1 Mb        | 1.1 Mb         | 100%           | 0              | 00:00:00       | 5.2 mA  | 00:00:03 | 7.3 Kb/s  | 24 C | 13.3 V  | 00:00:00    | elck 3d        | -             | 100%             | 0                | 1                  | 0      | 0              | 0%             | 13:55:37  | 1.0     |
| N4_344B | 1                  | 73.8 Mb        | 1.1 Mb         | 100%           | 0              | 00:00:00       | 5.5 mA  | 00:00:03 | 7.0 Kb/s  | 22 C | 13.3 V  | 00:00:00    | elck 3d ilck   | 141           | 100%             | 0                | 1                  | 0      | 0              | 0%             | 18:13:34  | 1.0     |
| N4_346B | 1                  | 72.9 Mb        | 1.1 Mb         | 100%           | 0              | 00:00:00       | 5,4 mA  | 00:00:03 | 6.6 Kb/s  | 24 C | 13.7 V  | 00:00:00    | elck 3d        |               | 100%             | 0                | 1                  | 0      | 0              | 0%             | 06:22:38  | 1.0     |
| N4_441B | 1                  | 74.9 Mb        | 1.2 Mb         | 100%           | 0              | 00:00:00       | 5.4 mA  | 00:00:03 | 7.1 Kb/s  | 26 C | 13.5 V  | 00:00:00    | elck 3d        | -             | 100%             | 0                | 3                  | 1      | 0              | 0%             | 09:33:36  | 1.0     |
| N4_451A | 1                  | 85.0 Mb        | 1.2 Mb         | 100%           | 0              | 00:00:00       | 6.6 mA  | 00:00:03 | 7.8 Kb/s  | 23 C | 12.4 V  | 00:00:00    | elck 3d        | -             | 100%             | 0                | 1                  | 0      | 0              | 0%             | 02:21:44  | 1.0     |
| N4_456A | 1                  | 86.0 Mb        | 1.2 Mb         | 100%           | 1              | 00:00:00       | 6.0 mA  | 00:00:03 | 8.2 Kb/s  | 26 C | 12.6 V  | 00:00:00    | elck 3d        | -             | 100%             | 0                | 1                  | 0      | 0              | 0%             | 11:04:00  | 1.0     |
| N4_545B | 1                  | 103.3 Mb       | 1.4 Mb         | 100%           | 0              | 00:00:00       | 7.1 mA  | 00:00:03 | 10.5 Kb/s | 25 C | 13.3 V  | 00:00:00    | elck 3d        | -             | 100%             | 0                | 1                  | 0      | 0              | 0%             | 18:55:28  | 1.0     |
| N4_553A | 1                  | 76.2 Mb        | 1.2 Mb         | 100%           | D              | 00:00:00       | 6.4 mA  | 00:00:03 | 7.3 Kb/s  | 25 C | 11.8 V  | 00:00:00    | elck 3d        |               | 100%             | 0                | .3                 | 2      | 0              | 0%             | 04:57:35  | 1.0     |
| N4_656A | 1                  | 81.9 Mb        | 1.2 Mb         | 100%           | 0              | 00:00:00       | 5.6 mA  | 00:00:07 | 8.3 Kb/s  | 27 C | 13.3 V  | 00:00:00    | elck 3d        | -             | 100%             | 0                | 1                  | 0      | 0              | 0%             | 12:32:00  | 1.0     |
| N4_735B | 1                  | 78.2 Mb        | 1.1 Mb         | 100%           | 0              | 00:00:00       | 5.6 mA  | 00:00:03 | 7.0 Kb/s  | 30 C | 13.3 V  | 00:00:00    | elck 3d        | -             | 100%             | 0                | 1                  | 0      | 0              | 0%             | 06:40:30  | 1.0     |

![](_page_42_Picture_10.jpeg)

IRIS earthscope 🔛

Faller

![](_page_42_Picture_12.jpeg)

![](_page_42_Picture_13.jpeg)

![](_page_43_Picture_0.jpeg)

# 2014 N4 Data Return

![](_page_43_Figure_2.jpeg)

![](_page_44_Picture_0.jpeg)

# Open Data

- Data policy
  - All data openly available in real time
- DMC Data Access
  - N4 network code
  - CEUSN virtual network code
  - BUD system for streaming real time data
  - Web Services and other archive interfaces

![](_page_44_Picture_9.jpeg)