
WEB SERVICES AT THE ANF
Antelope Users Group 2012

Reno, NV

OVERVIEW OF SERVICES

• The ANF runs several web sites

• http://anf.ucsd.edu is the primary site for TA and most hosted
projects (GLISN, Chile)

• http://eqinfo.ucsd.edu is primarily for the ANZA seismic
network, the San Jacinto Fault Zone temporary deployment,
and historic projects

RECENT EQS

• Two versions in use

•Old dbrecenteqs
version

• Interactive version
using the Google
Maps API

WEBDLMON

SOH PLOTS

•Datalogger state of health
metrics

• Communications stats from
Cell Modems and VSATS

• Plots last dail, week, month,
year, lifetime

• Fed by RRDTool archives

STATION DETAILS

OTHER IN-HOUSE TOOLS

•Orbmonrtd Image Dumps

• PDF mode graphs (grabbed
from IRIS)

•Data return rates

• Interactive waveform
explorer (webdlmon)

• Per stations event plots

• Instrument Response plots

• Instrument history charts
and plots (useful to see
where a datalogger has been
deployed before)

• Station Calibration runner

THIRD PARTY WEB TOOLS

• Confluence - Wiki

• JIRA - Issue Tracking and
Project Management

• Crowd - Identity
Management

•Network Monitoring -
Intermapper

• Flikr - online photo archive
for station photos

• Github - source code
management

• Jenkins - continuous
integration

ORIGINAL SITE
ARCHITECTURE

• Used the PHP bindings for Antelope written by Kent Lindquist

• All real-time queries to orbs and databases

• Little to no caching of database queries, image generation, etc

CURRENT SITE

• Split web functionality into front-end and back end
components

• Lots of back end processing - 3 systems

•Only a single front end, but with some changes we
can have multiple front ends

BACK END

•Driven by a bunch of cron jobs and daemons from numerous
rtexec instances across three separate systems

•Written in at least 6 programming languages (Perl, PHP,
Python, MATLAB, XSLT, Shell)

• A bunch of intermediate products - XML, JSON, Images,
Postscript files, etc.

CURRENT FRONT END

•Mixture of PHP (server side) and Javascript (runs on
the client in browser)

• Variety of data sources, none directly through
Antelope bindings

• PHP code loads pre-computed XML or JSON

• Javascript client code loads JSON

GOALS

• Clean up the back end processing

• Reduce the number of languages in use

• Reuse code across networks more effectively

PLAN

•Make web accessible APIs powered by a back end services
provider (like Twisted)

• Expand upon existing JSON feeds

• Convert static JSON files to dynamic feeds

• Use APIs as building blocks for pages

• Use a web framework (MVC) for the front-end display

BACK-END CONSIDERATIONS

• Some things should be "cron jobs"

•Data changes very infrequently

•Database queries of station metadata

•Other db queries - things driven by the dbmaster
and dbops

BACK-END CONSIDERATIONS

•Other things should be quasi real-time

•Orb queries

•Datalogger status packets - current value and near term
historic graphs

• Real-time waveform streaming

API EXAMPLES

• Preliminary - don’t depend on these being in our final version

• GET /nets/TA/stations?status=active

• GET /dlstatus/TA/stations/TA_109C

• GET /dlstatus/TAprelim/stations

• GET /nets/TA/dataloggers/109C

FRONT END STRATEGY

• Initially migrate existing pages from static text files to API-
provided data

•Migrate to a web framework. Use templating where possible.

• Re-usable modules for displaying station details, real-time data
logger monitoring, SOH plots

WHERE WE ARE NOW
•Working on code for a real-time feed of datalogger

status -- replacement for orbdlstat2xml

•Written using Python and the Twisted framework

•Queries multiple orbs and can consolidate them
into the same feed or multiple feeds

•Orb queries are asynchronous - web queries are
not affected while new data is loaded

• Rewriting webdlmon as a consumer for data
provided by this daemon

FUTURE SERVICE IDEAS

• orbwf2decimatedJSON

• Could power orbmonrtd for a web browser

• reads waveform data from the orb

• pre-decimates the data for serving up to web browser
clients

FUTURE SERVICE IDEAS

• Rewrite special events pages to be database driven.

• Currently a static mix of data and formatting code

• Breaks when we change the look and feel of the site

CURRENT STUMBLING
BLOCKS

• Twisted works best with a deferred thread model, but
Antelope bindings do not release the global interpreter lock

•Worked around with Python Ctypes to call C libraries
directly

• Using post-release 5.2-64p since we have problems with the
current python bindings

CURRENT STUMBLING
BLOCKS

•Database reads of waveforms from miniseed.

• Continuous updates to blockettes cause problems with
trexcerpt since blockettes change during trexcerpt call.

• Goes back to fundamental limitations of Datascope IPC - it's
confined to a single server.

CURRENT STUMBLING
BLOCKS

• Python libraries are lacking exceptions. Instead you
are using C style return value checking.

• Elog exceptions in prior versions weren’t
“Pythonic” - they were too general, and didn’t
reflect the actual type of error that occurred.

•Would like a python-specific set of exceptions

