
ANF SYSTEMS ARCHITECTURE

Antelope Users Group 2012
University of Nevada, Reno, NV

WHERE WE WERE

• Mid-2005

• Single Sun V240
with 3.5 TB
storage

• SIngle Linux
server for Web
site
• Single

Datacenter

INFRASTRUCTURE AT MAIN
DATACENTER

• 3 Dell R710 x86_64 servers,

• 192 GB RAM, 512GB
mirrored root disks, 2 port
Fibre Channel HBA

• Redundant Cisco Switches

• Cisco VPN Gateway, Serial
Console Server for Mgmt.

• 3 Apple Xserves

• Redundant QLogic SAN
Switches

• Compellent Storage System for
Block Storage

• Shared data via NFS

• Legacy Sun Hardware - 3
T5220 systems, 1 T2000 (for
network monitoring)

VIRTUAL MACHINES AND
ZONES

• Live on top of our physical
infrastructure

• Primary OS disk and host
specific data volumes on SAN
storage

• Can be moved between
physical servers with varying
degrees of ease. VMware is
automatic, Zones manual

• 15-20 CentOS Linux VMs
(varies)

• ~15 Solaris Zones

BACKUP DATACENTERS

• Main DR site at IGPP

• 2 Sun T2000 servers

• 3 Nexsan SATABeast
Storage Arrays

• 1 AC&NC JetStor Array

• Redundant LAN and SAN

• Total ~160 TB backup
storage

• Scorched earth site at IRIS
DMC

• Single Sun T2000 with 768
GB RAID5 internal disks

CURRENT INFRASTRUCTURE

VMWare vSphere

VMWare
Node

VMWare
Node

VMWare
Node

CentOS
6.2 Virtual
Machine

CentOS
6.2 Virtual
Machine

CentOS
6.2 Virtual
Machine

...

Puppet Configuration Management

Storage Area Network (Compellent)

Solaris
Node

Solaris
Node

So
la

ris
 Z

on
e

So
la

ris
 Z

on
e

So
la

ris
 Z

on
e

So
la

ris
 Z

on
e

In
te

rm
ap

pe
r

(N
et

w
or

k
M

on
ito

rin
g)

KEY ARCHITECTURE
HIGHLIGHTS

• Virtualization

• SAN Storage

• Redundant Network and SAN Connections

• Configuration Management

WHY VIRTUALIZATION?

• Keep intensive processing jobs from interfering with real-time data
collection

• Separation of core systems from analyst work and testing

• Easier hardware maintenance

• Easily create clones of existing systems for testing

VIRTUALIZED ANTELOPE
SYSTEMS

Acquisition
Import/
Export
Hub

Waveform Writes
Real-time Processing
Real-time data review

Web
products

Display
Kiosks

Dev/Test
Analyst

Post
Review

INTERMAPPER

SAN STORAGE

• Compellent system at primary
Datacenter
• 110 TB primary storage
• no more manually trying to move

data to fast disk or slow disk
depending on workload

• All of our old disparate storage
arrays pressed into service as
offsite replication target for
Disaster Recovery
• DR data synced via ZFS snapshots

WHY COMPELLENT?

• Antelope and our local extensions generate a lot of different storage
workloads

• Waveform data is write biased, lots of small writes

• Once it’s written, it’s typically read in large sequential chunks

• Orbservers can be read or write biased depending on their use

• RRDs really write biased, horribly inefficient

WHY COMPELLENT?

• Existing storage couldn’t keep up with write biased workload.

• We bought faster disk but it couldn’t fit all of our data there

• Copying data from one volume to another is slow, adds even more
workload to overtaxed storage

• We have core systems requirements, but we’re always conducting
experiments with data. Hard to predict what will be the most
popular data for the day.

COMPELLENT MANAGEMENT

Writes go into top tier fast disk, trickle down to slower storage
automatically
Least used data trickles to lowest tier of cheap slow disk.
If something suddenly becomes “hot” it will move up to higher tiers

VMWARE AND LINUX MIGRATION
• VMware cluster
• 3 servers running at 2/3rds capacity, can survive

outage of one server with no degradation of
performance

• Core TA acquisition, processing, distribution
migrated to Linux VMs(CentOS 6.2)

• 110 TB of Compellent storage
• Most Legacy Solaris Systems are being phased

out
• TA acquisition, import/export and analyst

processing all on Linux
• Web processing partially migrated

MIGRATION ADVANTAGES AND BENEFITS

• Commodity Intel hardware price/performance significantly better than
Oracle (formerly Sun) SPARC, especially post Oracle

• Ongoing software support looks better long term on Linux
• especially with regards to Antelope
• Other open source components used in our "stack" have been harder to keep up

to date on Solaris

• CPU speeds significantly faster
• No need to differentiate workloads between floating point and integer
• Catching up from a maintenance outage is significantly faster
• Real-time database processing by analysts is significantly faster
• startup time for dbloc2 went from 10 minutes down to 30 seconds

FURTHER MIGRATION ADVANTAGES AND
BENEFITS

• Easier to spin up new virtual machines

• duplicate most of environment for testing

• scaling - add new processing nodes as needed, configured like
existing ones

• Made easier by our use of Puppet

• clone a fresh base system, assign role, puppet does the rest.
Installs packages, starts/stops services, etc

• Infrastructure represented in code. Software, NFS permissions,
allowed users, switch configurations.

VMWARE

VMWARE

• Three physical systems running ESXi 5.1 on bare metal

• Virtual machine that works as a supervisor, command dispatcher

• Automatically monitors load, migrates VMs to less loaded physical
nodes as needed, transparent to users.

• Running at 2/3rds capacity so one server can be down for
maintenance

SYSTEMS PROVISIONING

• The cool kids call it “DevOps”

• Something similar in use almost since the beginning of the project
(2005), prior to that buzzword being coined

• We aren’t using ControlTier but something at that tier will replace
my few remaining SSH loops

CONFIGURATION
MANAGEMENT WITH PUPPET

• http://puppetlabs.com

• Puppet is a configuration management tool with a declarative syntax.
Similar in concept to Makefiles.

• You describe what something should look like, and the interpreter
figures out the steps from current configuration to desired
configuration.

INFRASTRUCTURE AS CODE.
LITERALLY.

PUPPET CODE EXAMPLE
package { 'openssh-server':

ensure => installed,
}

file { '/etc/ssh/sshd_config':
source => 'puppet:///modules/sshd/sshd_config',
owner => 'root',
group => 'root',
mode => '640',
notify => Service['sshd'], # sshd will restart whenever you edit this file.
require => Package['openssh-server'],

}

service { 'sshd':
ensure => running,
enable => true,
hasstatus => true,
hasrestart => true,

}

PUPPET DASHBOARD

• Dashboard gives me a quick overview of changes to code.

• Can also monitor other files/services not controlled by Puppet to
alert to changes.

PUPPET-ANTELOPE
• This wouldn’t belong at AUG without tying it into Antelope

somehow.

• https://github.com/UCSD-ANF/puppet-antelope

 antelope::instance { 'antelope' :

 user => 'rt',

 dirs => ['/rtsystems/foo', '/rtsystems/bar'],

}

antelope::instance { 'antelope-baz' :

 user => 'basil',

 dirs => '/rtsystems/baz',

 manage_fact => false, # don't create an entry in the antelope_services fact for

this instance.

}

ANTELOPE MANAGEMENT

• We use a lot of extensions to Antelope

• PHP, Perl bindings, Image Magick

• Customized parameter files for ANF

• Instrument responses

• Typically running two or three releases of Antelope

• Want consistent extensions available on all of them

ANTELOPE BUILD PROCESS

• All managed by a series of Makefiles and helper scripts

• Install Antelope

• Copy in initial license file for the build host

• Install $ANTELOPE overlays (localmake_config, some instrument
responses)

• Build $ANF site local tree

• Build contrib

ANTELOPE DISTRIBUTION
• Rsync based

• We tried packages, but too much flux of contrib code, don’t want
to redistribute 600+ MB package for 2 MB change during
incremental builds

• Deploy to development hosts first

• Stop acquisition, kick analysts off

• Deploy to production

• Deploy to backup sites

POST DISTRIBUTE TASKS

• All managed with Puppet

• System role specific parameter files (Transportable Array versus
ANZA)

• Site-specific (and version specific license files)

• Install /etc/init.d/antelope with customized list of rtexec instances

