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Array Network Facility

The Array Network Facility (ANF) at UC San Diego
• Specializes in real-time data acquisition, quality 

control, dissemination of seismic and met data

Two main projects:
•  USArray Transportable Array Network 

(anf.ucsd.edu)
•  Anza Network – UCSD operated seismic network 

in SoCal

Collaboration with the High Performance Wireless 
Research and Education Network (HPWREN)

•  Research
•  Education
•  Public Safety
•  Weather data (real time)
•  Cameras!
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Seismic Noise

• Multiple sources of seismic noise:
• Anthropogenic

• Planes
• Trains
• Automobiles

• Natural
• Wildlife
• Rainfall 
• Hail 
• Wind
• Thunder
• Storms
• Bolides (meteorites)
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IMS Infrasound arrays and 
USArray TA in June, 2007

11 rocket motor detonations from May to September
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IMS Infrasound arrays and 
USArray TA in June, 2007
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• A bolide burst above NE Oregon at 05:30 
AM local time on Feb 19, 2008

• The event was recorded by 4 infrasound 
arrays and several hundred seismic stations 
in the USArray and regional networks

• The seismic stations reveal how infrasound 
signals vary with range and azimuth

• Celerity (horizontal distance traveled/travel 
time) vs range plots may shed light on 
propagation paths and provide useful 
information about atmospheric structure 

Oregon Bolide 2008-02-19
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I57US

Seismic stns in red
recording from I56US

297 km

1700 km

1350 km

800 km
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Sample record 
section to west of 
event 

Z components

Bp 0.8-3.0 Hz
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Array CelerityJust I56US
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TA + Array Celerity
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Acoustic branches
Hedlin et al 2010
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Pressure Sensor Response
Events reviewed by ANF, 4/2004 - 9/2011

8

• Overlapping pass-bands provides continuous coverage from DC to 20 Hz

8

MEMS Barometer
EP - LDM

Setra Barometer
EP - LDO, EP - BDO

NCPA Infrasound Microphone
EP - LDF, EP - BDF

Wednesday, May 29, 13



Basic Description

• Sensor: 3 component Broadband 
seismometer & auxiliary sensors

• Datalogger & local data storage
• Power  &   data telemetry

6

TA Station 345A, MS
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Implementation of Atmospheric 
Pressure Sensors
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Pressure Observations
• Pressure and infrasound at 

every TA station
• Sampled at 40 samples per 

second
• Pressure fluctuations from DC 

to 20 Hz
• Multiple applications

• Noise induced on vertical and 
horizontal seismic channels

• Meso-scale atmosphere variation
• Acoustic energy propagating in the 

atmosphere
• Acoustic – seismic coupling

MesoWest is accessing 
data via web services
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Atmospheric Acoustic 
Transportable Array

IMS57 
70M aperture 
25 element array

Adjacent arrays near TPFO

TA-TPFO 
One port
Bag of gravel
Both tubes inside gravel

2 minute trace length
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Basic Observation
• Pressure observations show strong correlation to seismic data

LDM - pressure

LHE- seismic

Pressure – Seismic 
Coherence
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Pressure-Ground motion

• Pressure-seismic coherence is well observed for both vertical 
and horizontal components
• Multiple studies have used the pressure signal as a means of de-

noising the seismic data

• Vertical component
• At long periods (e.g., 2-4 mHz) verticals have a gravity contribution 

from the mass of air and deformation effect (Zürn & Widmer, 1995)

• Horizontal components
• Pressure fluctuations introduce multiple tilt effects (Sorrells, 1971)
• Traveling Wave Model

• Depends on pressure variation in time and space
• Local Deformation Model

• Depends on time variation of pressure, not spatial variation
• Assumed to be specific to local site - collective response of sensor, vault, 

local site conditions , . . .
• Like pushing on a three-legged stool with one weak leg – the result of 

pressure fluctuations from above will produce tilt in the same direction
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Method
• Use 30 day time series, bandpass filtered 2,000 s – 100 s
• Sliding ~3 hour window, 50% overlap
• Compute coherence in band around 1,000 s

• Rotate horizontals to maximize coherence
• Process several months of data

• ~450 coherence estimates per station per month
• Plow through noise, earthquakes, etc.

• Focus on spatial characteristics of pressure-seismic coherence, not amplitude 
relationship (e.g., admittance)

“poor” fit @320° best fit @ 200°C28A
Aug 2010
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Coherent Behavior at 
Neighboring Stations

Oct 2010 Nov 2010Aug 2010 Sept 2010

• Preferred orientation stable, but changes with time
• Neighboring stations C28A-D28A (70 km) behave similarly
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Implementation of Atmospheric 
Pressure Sensors
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• Strange 
signals

• Correlated 
across 
stations

• Slow move out

• Too slow for 
seismic

• Too slow for 
infrasound

8 Hours
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• 6.7 Aleutian 
Islands

• 6.9 New 
Britain

• 7.3 New 
Britain

• Slow move 
out
• Too slow for 

seismic
• Too slow for 

infrasound

8 Hours
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Islands
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Interesting Signals

40 sps

Unfiltered
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Interesting Signals

40 sps

DC - 0.01 
Lowpass 
Filter
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Interesting Signals
Broadband Seismic (40 sps) compared to Atmospheric Pressure (1 sps)
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Interesting Signals
Low Frequency Seismic (< 0.01 Hz) compared to Atmospheric Pressure (1 sps)

Ground deforming to pressure increase
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Storm Reports
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Interesting Signals
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Radar Image 1 - F29A

F29A
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Radar Image 2 - F29A

F29A
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F29A Pressure and Seismic

Radar Image 1 Radar Image 2
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NWS  Comparason
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NWS  Comparason
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Data Sampling Comparison
ASOS Station KEMP vs. TA Station R35A

 

KEMP
R35A

Gust Front
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Barometric Pressure Variations
Unfiltered Data
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Atmospheric Gravity Wave Band 
Periods - 2 to 6 Hours
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12

North propagating 2-6 hr GW

S36A: 1,800 to 8,000 s
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13

North propagating 2-6 hr GW
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13

North propagating 2-6 hr GW
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Tornado Prevalence
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Jackson Tornado on 
4/15/2011 – 245A
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6 hours

10 minutes

Jackson, MS
22:35:59 UTC

Jackson Tornado on 
4/15/2011 – 245A
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6 hours

Jackson, MS
22:40:33 UTC

10 minutes

Jackson Tornado on 
4/15/2011 – 245A
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10 minutes

Jackson Tornado on 
4/15/2011 – 245A
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Jackson Tornado on 
4/15/2011 – 245A
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1 minute

Jackson Tornado on 
4/15/2011 – 245A
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1 minute

Jackson Tornado on 
4/15/2011 – 245A

Impulsive Rise and Drop
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1 minute

Jackson Tornado on 
4/15/2011 – 245A

High Frequency Signal
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Joplin Tornado 
5/22/2011 – T38A
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Joplin Tornado 
5/22/2011 – T38A
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Joplin Tornado 
5/22/2011 – T38A

1.7 km
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5 minutes

3.0

-1.5
967.5

961.5

55 minutes

mb

Joplin Tornado 
5/22/2011 – T38A
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5 minutes

3.0

-1.5
967.5

961.5

55 minutes

mb

Window of 
Tornado 
Crossing

Joplin Tornado 
5/22/2011 – T38A
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Joplin Tornado
5/22/2011 – T38A

2 minutes
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Joplin Tornado
5/22/2011 – T38A

2 minutes

Impulsive Rise and Drop
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Joplin Tornado
5/22/2011 – T38A

2 minutes

High Frequency Signal
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Joplin Tornado
5/22/2011 – T38A
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Oklahoma Tornado on 
4/27/2011 – Y46A
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Mesa Grande View
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Mesa Grande View
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HPWREN Photo

Main challenge:  A single lightning event can contain 
multiple branches covering a large area.
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Data Integration

• The ANF is collaborating with Earth Networks and their 
Total Lightning Network (ENTLN) in order to identify 
thunder noise in our seismic data.

All lightning locations shown are from the ENTLN
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Mesa Grande Lightning

~ 7.5 km between 
CG1 and CG3
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Seismic Data
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Earthquake & Thunder

Earthquake

10 seconds

Thunder 
(not aligned)

10 seconds
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Earthquake & Thunder
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Earthquake & Thunder

Often similar 
patterns…
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Earthquake & Thunder

10 seconds

Thunder 
noise 
lined-up

Seismic 
event 

stands 
out

ENTLN 
Event time
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Ground Truth Example

Starting from a single event group from the ENTLN, identify 
thunder noise in seismic:

One “event” with four separate “origins”

IC   - Cloud to Cloud
CG - Cloud to Ground
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Ground Truth Example
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Ground Truth Example

ENTLN 
Event time

5 seconds
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Thunder review

•  Thunder noise from lightning events readily 
poses challenges for seismic analysts

•  Lightning can cover large areas vs. isolated 
seismic sources

•  Large area acoustic signatures difficult to 
determine arrival times in data (though 
“ballpark” estimates possible)

•  Signals from thunder can overlap, cross-over, 
and distort seismic waveforms
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Data Fusion

• Earth Networks’ comprehensive Total Lightning Network 
(ENTLN) helps isolate specific thunder obs.

• Seismic analysts can regroup waveforms using lightning 
events as point source “regions” – this helps isolate 
earthquake signatures

• Possibility of developing a real-time detector, though this 
would be difficult without supplemental data such as 
ENTLN
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Russian meteor 2013-02-15
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Russian meteor 2013-02-15
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Russian meteor 2013-02-15

Wednesday, May 29, 13



Russian meteor 2013-02-15
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Russian meteor 2013-02-15
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Russian meteor 2013-02-15
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Russian meteor 2013-02-15

• Chelyabinsk, Russia, 2013 02 15

• Equivalent ~100s

• Meteorite video

•
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Conclusions

• Meteorological sensors can enhance understanding of 
seismic data

• Meteorological sensors can create opportunities for 
collaboration between different scientific communities
• real time monitoring
• hazards
• civil defense 

• Seismic networks provide sites, permitting, real time 
telemetry

• Networks in Middle East using USArray technology 
are easily adaptable to extended environmental 
monitoring capabilities
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