
64 bit Antelope
where Antelope has not gone before

Daniel Quinlan, BRTT

Why?

large files

limits on memory (~ 2 Gbytes)

database size

use additional physical memory

support available on all platforms (almost)

32 bit more difficult on SuSE Linux

Matlab supports only 64 bit on Solaris

How does source change?

ints generally become longs

string and byte array indexes become long

gettbl(Tbl *list, long i)

memdup(void *a, long n)

long pushstr(void **vstack, char *s)

bitset(Bitvector *bvec, long i)

Datascope integers -> 64 bit

long nsamp, n ;

dbgetv(db, “wfdisc”, “nsamp”, &nsamp, ...

dbquery(db, dbFIELD_COUNT, &n)

But not every int

Still (32 bit) int

file descriptors

boolean return codes

network protocol (eg, orb) ints

ints in saved data structures (for compatibility)

pktid stays int (max 2G packets in orb => ~ 1000
Gbyte orb of 500 byte packets)

traces

generally, nsamp -> 64 bits

but not in

trfilter_segs, trfilter_pkts

msdget/msdput

Variable argument lists
 More subtle problems

compiler doesn’t know the types of arguments, so it
can’t coerce arguments to the right type.

In particular, the convention of using 0 to terminate a
variable argument list is often wrong, eg

dbgetv(db, 0, “nsamp”, &nsamp, 0) ;

dbgetv wants a pointer (to a string), so it gets 64 bits
from the stack, but only 32 bits of 0 were put onto the
stack.

strtbl()

concatpaths()

strconcat()

strjoin()

dbgetv()

dbputv()

dbaddv()

Problems

int ntables ;

dbquery(db, dbTABLE_COUNT, &ntables);

Its own special case: dbquery

existing longs are often meant as 32 bit integers

long long should probably stay as long in 64 bit

replace with int64_t, uint64_t

Other issues

But format has to change: %lld vs %ld,
depending on 32 vs 64 bit compilation

Where ints hold pointers

This doesn’t work any more. Use lint.

missing include files

 s = strdup(“”);

without

 #include <string.h>

s points to garbage.

Pay attention to complaints like

warning: implicit function declaration:

Consistency

generate prototypes

-auxinfo (gcc)

-xP (Solaris cc)

protoize

put them into include files

include these files, both in the implementation and
where the routines are used.

Miscellaneous

use %p to print pointers

look carefully at constants like 0xffffffff -- promotion to
64 bit will almost certainly be wrong.

new script 64bit attempts to point out, may fix many
common problems like the ending 0)

Jettison K&R c style

no implicit int -- e.g. Don’t use

no inline prototypes
main(argc, char **argv)

double atof() ;

Other changes

CVS -> git

http://youtube.com/watch?v=4XpnKHJAok8

c99

certify

Schema change Rules
Easy

size/format

add new fields

Harder

change names

Hardest

change keys

change tables

Problems

compatibility with other flat file css3.0 implementations

schema changes	

nsamp: 8 digits

id fields: 8 digits

non-64 bit changes

make dir/dfile larger

make grname and srname larger

Bolder changes

change ondate/offdate to time/endtime

eliminate jdate

Bold (and unlikely) changes

redo calibration table (again)

eliminate stage table altogether

eliminate instrument and sensor table

add net, loc codes to primary key

