
June, 2006

• A simple GUI
• Why do you need GUI’s in the first place?
• Fundamental knowledge
• GUI design strategy
• Example
• Pitfalls

There’s no such thing as a simple GUI

Danny Harvey
President
Boulder Real Time Technologies, Inc.



June, 2006

A Simple GUI



June, 2006

• Think HARD before you go down this road
• GUI programming should be considered as a task that requires

advanced programming knowledge and skills
• Do you know why you need a proposed GUI?
• Have you considered less exotic alternatives?
• GOOD reasons for GUIs:

– To show complex information that lends itself to graphical displays
– To provide intuitive and highly choreographed user inputs – note that

GUIs tend to constrain user interactions
• BAD reasons for GUIs:

– To alleviate the user from typing (the developer will certainly be
typing a lot more)

– A vain attempt to put a more “sophisticated” or “sexier” front-end on
some function that doesn’t really need it – note that a well designed
generalized type-based user interface is usually going to provide much
more function and flexibility than most GUI interfaces

Why do you need GUIs in the first place?



June, 2006

• GUI programming requires lots of knowledge regardless of
Antelope; you will not be successful with this unless you do
your homework

• The Antelope tools are no replacement for the fundamental
knowledge needed by any GUI programmer

• The Antelope tools make it easy for an already experienced
GUI programmer to interface with the various Antelope
objects

• What “knowledge” does a GUI programmer need?
– Good knowledge of the underlying programming or scripting language
– A journeyman’s understanding of the X-windows system; e.g. the X-

server, the relationship between clients and the X-server, the event
driven nature of X-windows interactions, fonts, colors, images, the
various graphics primitives, scaling

– Good knowledge of the particular widget package that is to be used. In
Antelope we mainly use tk-based widgets, either in tcl or perl.

Fundamental Knowledge



June, 2006

• Clearly define the problem you are trying to solve – it may surprise you
to find that this step may either eliminate the development task entirely
or point it in a direction that does not require a GUI

• “storyboard” the GUI – make drawings of what it should look like and
exactly how the user would interact (i.e. what particular widgets will be
used, how information will be displayed, process flow, etc.)

• Try to dissect the overall problem into three logical parts; 1) user GUI
front-end, 2) internal data engine and 3) a graphical display back-end
that will show whatever information you need to show

• Don’t try to do the whole problem in one monolithic chunk; it is fine to
be running separate programs and scripts that talk to each other in some
fashion – this also helps in prototyping and debugging

• Start off with the bare minimum GUI functionality – you can always
add more walking menus and dialogs later if you really need them

• Be patient – don’t expect to come up with your “final” solution quickly;
GUIs tend to be perpetual and incremental works-in-progress – accept
that fact and you will be a happier person

GUI Design Strategy



June, 2006

• Choose your language for the GUI and display parts
– I will skip over C, C++ and java
– Antelope contains fairly standard perl/tk extensions; this

provides the highest performance scripting approach with the
sophistication of the perl language. Downsides are lack of
Antelope perl/tk graphical extensons and perl’s hyper-
paranoid security limitations on normal tk IPC.

– Antelope contains fairly standard tcl/tk extensions plus special
Antelope graphics extensions, like brttplot; this provides the
highest graphics functionality scripting approach with the
simplicity of the tcl language and ease of fully duplex tk-based
IPC. Downsides are potential performance problems and limitations
in overall complexity due to simplistic nature of tcl language.

GUI Design Strategy



June, 2006

• Figure out how to glue the major pieces
together
– Internal data engine can be Datascope, ORB or

standalone analysis programs, like dbwfmeas
– IPC can be implemented through combinations

of database manipulations, external parameter
files, command line arguments and the use of
tksend to pass messages between processes

– A good approach is to modularize design by
using small stand-alone display libraries and
scripts

GUI Design Strategy



June, 2006

• Written as a tcl/tk script to provide a GUI to
the dbwfmeas program for specifying parameters
for noise spectra computations, execute the
computations and display the resulting spectra –
we consider this to be a simple GUI (420 lines of
code)

• dbwfmeas is designed as a graphic-less high
performance computation engine that reads data
from a database, computes stuff and puts its
computations into a database; all of the
computational parameters are specified through a
normal Antelope parameter file

Example - dbnoise



June, 2006

• Start by going through the process manually of setting up
dbwfmeas to compute spectra; consult dbwfmeas man
page, find some example data to work with and do what is
needed to compute spectra

• Determine exactly what parameters need to be specified by
the user; from this come up with a front-end “storyboard”
for the input GUI:

Station code entry widget
Channel code entry widget
Start/end time entry widget
Computation time window entry widget
Output spectrum units radiobutton widgets
Taper function radiobutton widgets
Time slice values entry widgets
Execute button widget

Example - dbnoise



June, 2006

• Write a skeleton tcl/tk script that makes the
GUI without actually doing anything – iterate until
it looks right and includes the right information

Example - dbnoise



June, 2006

Example - dbnoise



June, 2006

Example - dbnoise



June, 2006

• Extend the tcl/tk script to perform the steps that you
worked out when manually executing dbwfmeas:

1. Build up a temporary parameter file in /tmp
2. Execute dbwfmeas with the proper command line arguments

being careful to capture standard and error output
3. Monitor to see when dbwfmeas is finished and determine if it

ran successfully
4. If dbwfmeas encountered an error, display the error message
5. If dbwfmeas ran successfully, display its results
6. Clean up, i.e. get rid of temporary files

Example - dbnoise



June, 2006

Example - dbnoise



June, 2006

• Display is another
standalone tcl/tk
script widget, named
displaynoise,
which will display
the noise spectra as it
is stored in an
Antelope database

Example - dbnoise



June, 2006

Example - dbnoise


