Data Flow Within
Antelope

An Overview of ARTS

June, 2005

Data Flow Within Antelope

* Why should you care?

BRTT

— Antelope is the primary software for data acquisition, system
monitoring, system control and configuration and initial data
processing for the IRIS USArray/Earthscope project

Antelope also is available to IRIS member institutions and is being
used as the primary software in a number of seismic networks in
the US and around the world

For staff involved in the Earthscope projects, it is important to
have some kind of understanding of the basic tools that are being
used, such as Antelope

We have seen some problem situations which seem to us have
arisen due to a misunderstanding about the Antelope tools, even
sometimes by experienced Antelope users

“Data Flow Within Antelope” was written to address some of
these problems and to clearly describe how and why Antelope was
developed and how it works at its most fundamental level

We hope that all staffers and other interested parties will take the
time to read the complete document

June 2005

Data Flow Within Antelope

« Basic Design of the Antelope Real-time System (ARTS)
— The Antelope software package
— Brief history of development
— Fundamental requirements
— A quick review of the Antelope design
— Alist of basic Antelope capabilities
e ARTS Inner Workings
ORBs and orbservers
ORB names and the ORB protocol
ORB - client communications
Pushes, pulls and state info
ORB packet srcnames
Decoding and encoding ORB packets
Using orbstat
e An ARTS Example; the USARRAY Transportable Array Facility
— The TA facility
— A conceptual configuration for ARTS layout
— Detailed ARTS configuration for the TA
— Alook at ORB packet data types in the TA ARTS

BB ﬁ June 2005

Basic Design: Antelope Software Package

» Antelope is a large software package
— 480 programs and scripts
— 70 software libraries
— SUN/Solaris, x86/Linux, ARM-Xscale/Linux, Mac

OS/X

 Supports both off-line batch processing using a
database system and automated real-time
processing (ARTYS)

» Although Antelope can be configured to
implement very complex and distributed systems,
its basic design is simple

BRW June 2005

Basic Design: Brief History

» ARTS design started in mid-1990s

« Initial design based on existing systems and a set
of initial requirements (derived from IRIS JSP and
BBArray projects)

— Needed a system that could work with a variety of
dataloggers and acquisition systems

— Needed a system that could accommodate non-time-
series objects

— Needed a system that could be easily distributed across
many hosts in many geographic locations

— Needed a system that was highly automated and robust
to minimize human labor requirements

BR ﬁ June 2005

53 ?T June 2005

Basic Design: Brief History

What we liked about existing system
Store-and-forward strategy

Quantizing digital data into discrete packets

Fixed size reusable circular buffers

Non-volatile data node buffers

TCP/IP for inter-node communication

— Server-client approach for all data node communication

What we didn’t like about existing systems
Use of a single “standard” fixed format data packet representation

Hardwiring data packet ordering restrictions based upon certain
datalogger communication characteristics

Exclusive use of certain data and info content types
Fixed data packet byte size limitations

BB TT June 2005

Basic Design: Fundamental Requirements

Data-driven store-and-forward system
Packetized data
Fixed size non-volatile circular buffers

Data packets shall have no size or information content
limitations

Ability to accommodate any data packet formats

Circular buffers shall be able to efficiently intermix
packets of varying size, information content and formats

No packet ordering restrictions

Mechanism for identifying data packet contents and
formats

Data nodes shall use a server-client mechanism

TCdP/IP as the only means for communicating with data
nodes

Software tools to support generalization of packet
encoding and decoding

BRW June 2005

Basic Design: ARTS Design

* ORB and orbserver
— ORB implemented as a circular non-volatile data store on disk
— orbserver acts as a server for all ORB input and output

- Assingle ORB can efficiently accommodate variable size,
information content, format packets with no ordering restrictions

— All client modules “talk” to ORBs only through its orbserver
program using TCP/IP
» Packet subscription and control of read pointers

— All ORB packets have a time tag and a srcname which is used to
identify the packet origin, information content and format

— The srcname is a simple ASCII string that is used as a means for
client packet subscription to the orbserver

- Clients can also cause the orbserver to position the read
pointer according to time, pktid or relative location

* Note that orbserver never makes all attempt to decode
packet payloads or use anything in the packet payloads

BR TT June 2005

[E—. . — —.
DATALOGGER DATALOGGER DATALOGGER [P DATALOGGER
Q4120 Q3 Q330 K2
\ f /
hY
~a i >

- =i iy =
| gqt2orb) \\ ; [k220rb |

Dmlnga. [q33020xb |

%_.h erbZorb [oxbZorb __...Fﬁ
8 P B
Fe—ma{ cs2omd (orb2cdls jmmma-3
= : = :
Heee{ ewzorb)~ /ObjectRing ([otbzew et
DataNode mport Cients Buffer (ORB) 1= el EpotCions
b= orbserver
{ ortdatact EuE orbzdb hmmmep- =
i : 4 g
sibassos [orb2dbt jmmmmo S
(orbmag
Data Processing Clients Data Archiving Clients

ORB Client Software Modules

—- ARTS ORS - Chent TCPIP communication
= Dther

BBﬁ June 2005

Basic Design: ARTS Design

* Reliable TCP/IP orbserver-client links

- ARTS middleware tool insures completely reliable communication
across most comm link failures

— Done transparently to the user and the application programmer
+ Software tool for systematizing packet encoding and
decoding within client software modules

— Allows client processing programs to be written in a format
independent manner

— Provides for a well documented procedure for incorporating new
formats into the system

BB TT June 2005

Basic Design: ARTS Capabilities

» Highly modular and interoperable
 Distributed processing
* Minimum processing latency

 Efficient store of data packets with varying size,
formats and information contents

 Real-time data merging
 Real-time data distribution
 Real-time data processing
» ORB data tunneling

BRW June 2005

Inner Workings: ORBs and orbservers

* orbserver stuff:
orbserver [-P prefix] [-p port] [-s size] [-krv[v]] pfname

— Port number assignment in —p, default set to 6510

— Antelope port no. aliases in
$ANTELOPE/data/pf/orbserver_names.pf

— ORB consists of four normal UNIX files with filename
prefix specified by —P argument

— Size of a newly created buffer in —s (-s ignored for
existing buffers)

— orbserver parameter file specified by pfname
e orbserver parameter file:

— This is where you set client connection permissions
— You can set a “no-permission” message

BB TT June 2005

Inner Workings: ORB names & ORB protocol

 ORB names look like other network service
names, e.g. like Ftp servers:
[<ip-address>][:[<port>]]

» Antelope port aliases

* ORB protocol

— Defines client — orbserver control and
synchronization messages

— Defines a thin wrapper for encapsulating
arbitrary data packets into ORB packets

BRW June 2005

o OrbSync 4 bytes ("orbm”)
L

Eg

gD OrbCode 4 bytes

u g

m c

g ® OrbErr 4 bytes

pktid 4 bytes

pktsize 2 or 4 bytes

srcsize 2 bytes

ORB Packet
Header

time 8 bytes

srcname srcsize bytes

Packet
Payload

packet pktsize bytes

BB TT June 2005

Inner Workings: ORB - client communications

* Most client software uses the ARTS liborb tool

* The ARTS l1borb tool provides a very comprehensive
and robust ORB interface:

— Handles all client-orbserver TCP/IP connection setup, ORB
protocol messages and data transmission

— Packages binary packet payloads with ORB header and framing
characters

— Interfaces for packet subscription and setting ORB read pointers

— Both blocking and non-blocking packet read interfaces

— Both single packet and “reap” read interfaces

— Both simplex and acknowledged write interfaces

— Automatic seamless reconnects

— Automatic byte ordering at ORB protocol level

— Note that 1 iborb makes no assumptions about packet payload
contents

BRW June 2005

Inner Workings: Pushes, pulls & state info

* ARTS has been designed to facilitate
automatic transfers of real-time continuous
data from one ORB to another: orb2orb

» Where to run ORB packet transfer clients,
like orb2orb? At one ORB, at the other
ORB, anywhere else with an ip connection

» Answer - usually, on the same host as the
output ORB so that the pull is going across
the long-haul link

BR ﬁ June 2005

srcnames:

Q330 q3302orb > NB_DEF/MGENC
NB_DEF 3308 NB_DEF/log

- \ = NB_GHI/MGENC
Q330

SPCHames:
NA_ ABC/MGENC

> : NE_GHI/log
Y oreB g330B/pf/st
i — . g330B/1og

NA_ABC/log i
q330A/pf/st HOST B -

q330A/log |

r orb2orb I
N “F“‘.

330A :

orbZorb -m NA ABC/MGENC

orb2orb -r ’.*/MGENC|NA .*|g330A/.%' ...

53 ?T June 2005

Inner Workings: Pushes, pulls & state info

» Note that most of the inter-host data transfers are
done with ORB client pulls

* Note the simplex ORB links

 Independency of ORB-client links; use of
threading

» Note the potential feedback data loop between
orb2orb insances on hosts A and B

 Client state processing with Antelope state files

BR TT June 2005

Inner Workings: ORB packet srcnames

» Generic ASCII tag for identifying packet origin,
information content and format

» Assigned by client programs that generate new packets,
managed verbatim by the orbserver and reported with
the packet payload when read by a client program

» There is an ARTS naming convention for srcnames; note
this is strictly a client-level thing

[<origin>]/<suffix>[/<subcode>]

* The <origin> partis, by ARTS convention, the SEED
<net>[_<sta>[_ <chan>[_<loc>]]] fortime-
series waveform data packets

BRW June 2005

10

e a5 tion 1
i L tacm i
BR 1 i June 2005

Inner Workings: ORB packet srcnames

* ORB srcnames provide a powerful and
generalized mechanism for client packet
subscription through the use of UNIX

regular expression matching by the
orbserver

» Understanding how srcname matching and
rejection work is crucial to understanding
how to configure ARTS

 Lets look back at the previous data flow
example to see how this works

BB?T June 2005

11

46 korw orbatat -8 Tuper.brtt.com:scdemo
orboerver 6/02/2005 (153) 16:47:01.312

Version 'Release 4.7 Sun08 5.8 2005-04-01 *

Pid 18502 @ ruper:/export/dftest/rt/rtdemo_socalif (207.174.76.133), port #12742

gtarted Thu J005-153 Jun 02 1643057 by danny, running 19.04 minutes

Ting buffer last initialized Thu F005-153 Jun 07 16:28:56

Maxizun 1033 Mbytes packet data

Maxisun 3884384 packets

Maximin 1000 mources

14 client:

6% sources

35 spens 21 el o e o rejections
gour

Oldest Latest Avg.

Srenane Thread #pkto kbytes pkeid time petid time Ebaud
e oo 7 78 14 805 153 18:32:38 4703 153 16:46:37 0,134
/db/netnag L] 4] 1278 153 16:34.07 1962 153 16.:35.5) 0.035
fanjerig] 4 o 1370 153 16:32:23 1861 153 16:32:23 -16.684
fdb/etany 9 0 54 & 1379 153 16:134:107 1876 153 16135:5) 0.500
/pt forbadot 11 12 73 915 153 16:33:02 4544 153 16146:18 0.738
/Pt forbaag n » 3 B18 153 148:33:03 3373 183 16141408 0081
Az _BEn/cubLE 17 164 137 15 1853 16230011 4336 153 18148000 1.148
Az _CRY/CHULE 17 164 113 13 153 16:30:11 4331 153 16145400 1.017
Az _PED/CBBLE 17 164 98 16 153 16:30411 4320 153 1€145:00 0.888
xz_yww/cBBLe 17 163 110 35 153 16¢30116 4319 153 16145100 0,999
AZ_LVA2/CHELE 17 164 101 18 153 16.30011 4328 153 1d:45.00 0.813
AZ_MONE/COULE 17 164 11w £ 153 16:30.11 4337 153 16:45.00 1.062
|az_prosconLs 17 164 140 17 153 16630411 4339 153 16145400 1.265
A2 ROM/CRBLE 17 164 116 7 153 16:30s11 4331 153 16145400 1.081
x_mm/cBBLe 17 184 118 B 153 18:30:11 4334 153 1£:45:00 1.088
Az_soL/caBLs a7 164 saes 14851 L
Az_TRO/CHILE 17 163 77 10 153 16:30:11 4330 153 16145.00 0. 658
Az wwc/CBBLE 17 164 141 3 153 16:30:11 4325 153 16145400 1.273
CT_BAR_BRE/SEED 17 52 5 62 153 16:30:05 4683 153 16146+54 0.213
o7 _BAR_NHM/SEED 17 58 an 41 153 14:30:03 4654 151 16:46.50 0.238
CI_BAR_UHZ/SEED 17 51 as 95 153 16430411 4604 150 16146156 02089
C1_CLA_BHE/SEED 17 49 s 49 153 16:30:03 4582 153 16146155 0.199
il Shell

BR ﬁ June 2005

Inner Workings: Decoding and encoding

* ARTS is format neutral at its most basic working
level (i.e. orbserver — orb2orb transport)

» How to design client programs to use packets of
varying formats without having to write different
versions for each format?

* The ARTS solution to this is the libPkt
middleware tool

 Client programs that use libPkt can be written so
that they will work with different packet formats
without any application-level format dependent
coding

BB?T June 2005

12

Inner Workings: Decoding and encoding

How do we do this?

1. Define “generic” application-level packet
structures with the packet information in the
most convenient form for the application

programmer
2. Develop and use “universal” stuff and unstuff

transcoders that convert any binary packet
representations in and out of the generic

structures
3. The srcname <suffix> field is used as a key

by libPkt’s unstuffPkt() routine.

BRTT

June 2005
srcrame | unstuffPkt() | Packet description
<suffix> |retum entries
GENC Pkt wE nchannels = 1 | Agemerc compressed single

hannels ;hm:lofdmmﬁxm}hu.
defined by BRTT.
MGENC Pkt _ wi nchannels »=1 | Amltiplexed set of generic
- compressed waveform chan-
channels nels, Format and compres-
sion defined by BRTT.
QCDAT Pkt _we nohanmels — 1 | AStim 12 compressed
J—— cimgle channel of waveform
data. Format and compres-
sion defined by Quanterra.
“This is a raw Quantemza
telemetry format and is
NOT the same as SEED
calib,calper and
segtype areadded
i a header before the raw
Quanterra data.
SEED Pkt _ wf = A ingle chan
_w nchannels =1 |Asompresed sngle ch
channels standard mmi-SEED format
calib,calper and
segtype am
i a header before the raw
SEED daa.
pf Pkt _ pf pf An Antelope parameter file
- chject.
db Pkt _db db A datascope single row da-
- dfile tabase object with optional
external file contents,
dfile size b
log Pkt _ch string An ASCT log message.
string size
BR] 1 June 2005

13

Inner Workings: Decoding and encoding

Rules for using libPkt:

1. Each raw waveform packet channel must contain, at a
minimum, SEED net,sta,chan,loc codes plus time of first
sample, number of samples and sample rate

2. Itis kosher to infer these parameters from the ORB
packet time tag and/or srcname

3. All of this stuff must be self contained within each ORB
packet — no inter-packet state processing allowed

4. There must be a one-to-one correspondence between
each raw ORB packet and a single generic packet

Desirable raw packet info
1. Units of physical output, segtype
2. Total channel sensitivity, cal ib, calper

BB ﬁ June 2005

Inner Workings: Decoding and encoding

Defining new formats using libPkt:
o Packets “compiler”

BRW June 2005

14

Inner Workings: Using orbstat

» Please spend some time with this very
useful tool

» Can be used for 1) debugging, 2) training
3) general exploration

» Strictly text base which means it should
run in just about any environment

BR ﬁ June 2005

BB?T June 2005

15

ARTS example: The TA facility

BRTT

June 2005
| BRTT S
: | x
e —— i —| Transpartable Array,as of June 3,2005
b Data Centers A
Contributing Network Centers)
Users \
.
uce Anza Stations (AZ)
I W Callech Stations ()
W Berkeley Stations (BKI
W Trnsportsble Amay Stations (TAl ||
T \
| \
|
| B w
| AOF \
| |
BRTT aune 2005

16

Ta
contribwf export
(TAImport)

Data:
contrib wfs
[TA wfs subset] system monitoring
system develop & test
Data:
primary (TA) acquisition TAwfs
TA command & control contrib wfs
seconday acquisition dI SOH/cenfig
: ‘event processing/QC system SOH/config
$ archiving for ev proc & QC | event Ini
3 'system monitoring dl commands
‘O&M web services dl cmd responses
system develop & test
T PR T

Data:

: TA wfs TAwfs
| contribwfs contribwfs
5 dl SOH subset dl SOH/config

systern SOH/conflg

eventinfo

dl commands

dlemd responses
T

Ta
contribwf export
[TA Import]

contrib wfs
Data:

dI SOH/config
contrib wfs system SOH/config
[TA wfs subset] eventinfo

TA DATALOGGERS dlcommands
dlcmd respenses

Q330 Q330 E iz
TA_109C TA_AO4A

BR?T June 2005

TA PRODUCTION DATALOGGERS

ruperbrtt.com

S Ex

o

= & g

BE TT June 2005

BRTT

van.ucsd.eduzusarray

srcname description

origin

TA _ 103C/MGENC/MST A multiplexed time-series packet using MGENC compres-
g3302orbélocalhost sion from the TA network station 109C that contains

state_of health waveforms. The packet was originally
generated by the ORB client module g23020rb attached
to the ORB at vsn.ucsd.edu:usarray, the main

TA processing ORB. This packet currently contains data
from the LCC, LPL, LCL, VCO, VEC, VEA, VTW and
VPB state-of-health channels. The packets are configured
as 5 minute fixed duration packets. Note that the data rates
for the L.. channels are 1 sps and the data rates for the V..
channels are 0.1sps.

TA _ 103C/MGENC/MSTC
q3302orbelocalhost

A multiplexed time series packet using MGENC compres-
sion from the TA network station 109C that contains state-
of-health waveforms. The packet was originally generated
by the ORB client module g33020rb attached to the
‘ORB at vsn.ucsd.edu:usarray. the main TA
processing ORB. This packet currently contains data from.
the QRD, QWD, QEF, QDG, QGD, QDL, QLD, QBED,
QDR, QRT. QTH state-of-health channels. The packets
are configured as 5 minute fixed duration packets. Note
that these channels are all computed by the g33020rb
client program, not the dataloggers, and they mainly relate
to datalogger communication Ik statistics as seen by
q33020Tb. Because these are computed by g33020rb
and because the state-of health channels coming directly
from the dataloggers can be substantially time delayed
after a communication link failure, the time bases between
these channels and the MST channels can be substantially
different

TL _ 109C/MGENC/MSTD
g3302orb@localhost

This is a sepregated set of more datalogger state-of health
channels similar to the TA _ 109C/MGENC/MST packets
This packet currently contains the LCE, LCQ, VEPVKI,
VMI, VM2, VM3, VM4, VM35 and VM6 channels. The
packets are configured as 5 minute fixed duration packets.
Note that the data rates for the L.. channels are 1 sps and
the data rates for the V.. channels are 0.1sps.

T2 _ 108C/log
q33020rb@localhost

ASCII log messages generated by g33020rb for the TA
network station 100C based on a set of user configurable
criteria and various datalogger binary state parameters.

TA _ RD4A/MGENC/M1, TA _AD4A/MGENC/M40, TR _ AO4A/MGENC/MST,

June 2005

18

