
1

June 2005

• Why should you care?
– Antelope is the primary software for data acquisition, system

monitoring, system control and configuration and initial data
processing for the IRIS USArray/Earthscope project

– Antelope also is available to IRIS member institutions and is being
used as the primary software in a number of seismic networks in
the US and around the world

– For staff involved in the Earthscope projects, it is important to
have some kind of understanding of the basic tools that are being
used, such as Antelope

– We have seen some problem situations which seem to us have
arisen due to a misunderstanding about the Antelope tools, even
sometimes by experienced Antelope users

– “Data Flow Within Antelope” was written to address some of
these problems and to clearly describe how and why Antelope was
developed and how it works at its most fundamental level

– We hope that all staffers and other interested parties will take the
time to read the complete document

Data Flow Within Antelope

2

June 2005

• Basic Design of the Antelope Real-time System (ARTS)
– The Antelope software package
– Brief history of development
– Fundamental requirements
– A quick review of the Antelope design
– A list of basic Antelope capabilities

• ARTS Inner Workings
– ORBs and orbservers
– ORB names and the ORB protocol
– ORB – client communications
– Pushes, pulls and state info
– ORB packet srcnames
– Decoding and encoding ORB packets
– Using orbstat

• An ARTS Example; the USARRAY Transportable Array Facility
– The TA facility
– A conceptual configuration for ARTS layout
– Detailed ARTS configuration for the TA
– A look at ORB packet data types in the TA ARTS

Data Flow Within Antelope

June 2005

• Antelope is a large software package
– 480 programs and scripts
– 70 software libraries
– SUN/Solaris, x86/Linux, ARM-Xscale/Linux, Mac

OS/X

• Supports both off-line batch processing using a
database system and automated real-time
processing (ARTS)

• Although Antelope can be configured to
implement very complex and distributed systems,
its basic design is simple

Basic Design: Antelope Software Package

3

June 2005

• ARTS design started in mid-1990s
• Initial design based on existing systems and a set

of initial requirements (derived from IRIS JSP and
BBArray projects)
– Needed a system that could work with a variety of

dataloggers and acquisition systems
– Needed a system that could accommodate non-time-

series objects
– Needed a system that could be easily distributed across

many hosts in many geographic locations
– Needed a system that was highly automated and robust

to minimize human labor requirements

Basic Design: Brief History

June 2005

4

June 2005

• What we liked about existing system
– Store-and-forward strategy
– Quantizing digital data into discrete packets
– Fixed size reusable circular buffers
– Non-volatile data node buffers
– TCP/IP for inter-node communication
– Server-client approach for all data node communication

• What we didn’t like about existing systems
– Use of a single “standard” fixed format data packet representation
– Hardwiring data packet ordering restrictions based upon certain

datalogger communication characteristics
– Exclusive use of certain data and info content types
– Fixed data packet byte size limitations

Basic Design: Brief History

June 2005

• Data-driven store-and-forward system
• Packetized data
• Fixed size non-volatile circular buffers
• Data packets shall have no size or information content

limitations
• Ability to accommodate any data packet formats
• Circular buffers shall be able to efficiently intermix

packets of varying size, information content and formats
• No packet ordering restrictions
• Mechanism for identifying data packet contents and

formats
• Data nodes shall use a server-client mechanism
• TCP/IP as the only means for communicating with data

nodes
• Software tools to support generalization of packet

encoding and decoding

Basic Design: Fundamental Requirements

5

June 2005

• ORB and orbserver
– ORB implemented as a circular non-volatile data store on disk
– orbserver acts as a server for all ORB input and output
– A single ORB can efficiently accommodate variable size,

information content, format packets with no ordering restrictions
– All client modules “talk” to ORBs only through its orbserver

program using TCP/IP
• Packet subscription and control of read pointers

– All ORB packets have a time tag and a srcname which is used to
identify the packet origin, information content and format

– The srcname is a simple ASCII string that is used as a means for
client packet subscription to the orbserver

– Clients can also cause the orbserver to position the read
pointer according to time, pktid or relative location

• Note that orbserver never makes all attempt to decode
packet payloads or use anything in the packet payloads

Basic Design: ARTS Design

June 2005

6

June 2005

• Reliable TCP/IP orbserver-client links
– ARTS middleware tool insures completely reliable communication

across most comm link failures
– Done transparently to the user and the application programmer

• Software tool for systematizing packet encoding and
decoding within client software modules
– Allows client processing programs to be written in a format

independent manner
– Provides for a well documented procedure for incorporating new

formats into the system

Basic Design: ARTS Design

June 2005

• Highly modular and interoperable
• Distributed processing
• Minimum processing latency
• Efficient store of data packets with varying size,

formats and information contents
• Real-time data merging
• Real-time data distribution
• Real-time data processing
• ORB data tunneling

Basic Design: ARTS Capabilities

7

June 2005

• orbserver stuff:
orbserver [-P prefix] [-p port] [-s size] [-krv[v]] pfname

– Port number assignment in –p, default set to 6510
– Antelope port no. aliases in

$ANTELOPE/data/pf/orbserver_names.pf
– ORB consists of four normal UNIX files with filename

prefix specified by –P argument
– Size of a newly created buffer in –s (-s ignored for

existing buffers)
– orbserver parameter file specified by pfname

• orbserver parameter file:
– This is where you set client connection permissions
– You can set a “no-permission” message

Inner Workings: ORBs and orbservers

June 2005

• ORB names look like other network service
names, e.g. like ftp servers:
[<ip-address>][:[<port>]]

• Antelope port aliases
• ORB protocol

– Defines client – orbserver control and
synchronization messages

– Defines a thin wrapper for encapsulating
arbitrary data packets into ORB packets

Inner Workings: ORB names & ORB protocol

8

June 2005

June 2005

• Most client software uses the ARTS liborb tool
• The ARTS liborb tool provides a very comprehensive

and robust ORB interface:
– Handles all client-orbserver TCP/IP connection setup, ORB

protocol messages and data transmission
– Packages binary packet payloads with ORB header and framing

characters
– Interfaces for packet subscription and setting ORB read pointers
– Both blocking and non-blocking packet read interfaces
– Both single packet and “reap” read interfaces
– Both simplex and acknowledged write interfaces
– Automatic seamless reconnects
– Automatic byte ordering at ORB protocol level
– Note that liborb makes no assumptions about packet payload

contents

Inner Workings: ORB – client communications

9

June 2005

• ARTS has been designed to facilitate
automatic transfers of real-time continuous
data from one ORB to another: orb2orb

• Where to run ORB packet transfer clients,
like orb2orb? At one ORB, at the other
ORB, anywhere else with an ip connection

• Answer - usually, on the same host as the
output ORB so that the pull is going across
the long-haul link

Inner Workings: Pushes, pulls & state info

June 2005

10

June 2005

• Note that most of the inter-host data transfers are
done with ORB client pulls

• Note the simplex ORB links
• Independency of ORB-client links; use of

threading
• Note the potential feedback data loop between
orb2orb insances on hosts A and B

• Client state processing with Antelope state files

Inner Workings: Pushes, pulls & state info

June 2005

• Generic ASCII tag for identifying packet origin,
information content and format

• Assigned by client programs that generate new packets,
managed verbatim by the orbserver and reported with
the packet payload when read by a client program

• There is an ARTS naming convention for srcnames; note
this is strictly a client-level thing
[<origin>]/<suffix>[/<subcode>]

• The <origin> part is, by ARTS convention, the SEED
<net>[_<sta>[_<chan>[_<loc>]]] for time-
series waveform data packets

Inner Workings: ORB packet srcnames

11

June 2005

June 2005

• ORB srcnames provide a powerful and
generalized mechanism for client packet
subscription through the use of UNIX
regular expression matching by the
orbserver

• Understanding how srcname matching and
rejection work is crucial to understanding
how to configure ARTS

• Lets look back at the previous data flow
example to see how this works

Inner Workings: ORB packet srcnames

12

June 2005

June 2005

• ARTS is format neutral at its most basic working
level (i.e. orbserver – orb2orb transport)

• How to design client programs to use packets of
varying formats without having to write different
versions for each format?

• The ARTS solution to this is the libPkt
middleware tool

• Client programs that use libPkt can be written so
that they will work with different packet formats
without any application-level format dependent
coding

Inner Workings: Decoding and encoding

13

June 2005

How do we do this?
1. Define “generic” application-level packet

structures with the packet information in the
most convenient form for the application
programmer

2. Develop and use “universal” stuff and unstuff
transcoders that convert any binary packet
representations in and out of the generic
structures

3. The srcname <suffix> field is used as a key
by libPkt’s unstuffPkt() routine.

Inner Workings: Decoding and encoding

June 2005

14

June 2005

Rules for using libPkt:
1. Each raw waveform packet channel must contain, at a

minimum, SEED net,sta,chan,loc codes plus time of first
sample, number of samples and sample rate

2. It is kosher to infer these parameters from the ORB
packet time tag and/or srcname

3. All of this stuff must be self contained within each ORB
packet – no inter-packet state processing allowed

4. There must be a one-to-one correspondence between
each raw ORB packet and a single generic packet

Desirable raw packet info
1. Units of physical output, segtype
2. Total channel sensitivity, calib, calper

Inner Workings: Decoding and encoding

June 2005

Defining new formats using libPkt:
• Packets “compiler”

Inner Workings: Decoding and encoding

15

June 2005

• Please spend some time with this very
useful tool

• Can be used for 1) debugging, 2) training
3) general exploration

• Strictly text base which means it should
run in just about any environment

Inner Workings: Using orbstat

June 2005

16

June 2005

ARTS example: The TA facility

June 2005

17

June 2005

June 2005

18

June 2005

