
2002 Antelope Workshop

Frank Vernon IGPP/UCSD
Danny Harvey BRTT
Jennifer Eakins IGPP/UCSD
Gary Pavlis Indiana University
Daniel Quinlan BRTT

2002 Antelope Workshop

Danny Harvey
Boulder Real Time Technologies, Inc.
danny@brtt.com

2002 Antelope Workshop

“Routine” Automated Seismic Network Processing

orb2db, orb2dbtarchiving

dbml, dbampmag, etc.orbmag, orbampmagmagnitude
estimation

dbgrassocorbassocgrid-based event
association and
location

dbtriggerorbtrigger“crude” event
association

dbdetectorbdetectsingle channel
detection

orb2db, orb2dbt, sd2db,
psd2db, dbsteimu, etc.

qt2orb, k22orb, orb2orb,
ew2orb, cd2orb, etc.

waveform
acquisition

batch-modereal-time

2002 Antelope Workshop

Data Flow for “Routine” Automated Seismic Network
Processing: Single Associator

from real-time waveform

data sources
ORB packets

waveform
SL_LJU_BHZ/QCDAT

orb2dbt

archive
database,
foreign

keys

orb2db
orbdetect

orbtrigger

orbmag

id
server

single channel event
detection and onset time
estimation
crude event association
(time coincidence based)

travel time-back
projection based
associator
(grid search for
candidate hypocenters)

archives waveforms
populates wfdisc table

populates all other tables computes magnitude estimate

travel time
grid

foreign
keys

ttgrid

detection
/db/detection

event
/db/event

arrival
/db/arrival

assoc
/db/assoc

origin
/db/origin

pick list
/pf/orbassoc

netmag
/db/netmag

stamag
/db/stamag

origin
/db/origin

orbassoc

mag pars
/pf/orbmag

2002 Antelope Workshop

orbdetect

SYNOPSIS

orbdetect [-v] [-select expr] [-tstart start_time]

 [-twin minutes] [-pf pfname] [-out orbout]

 orbname dbname

DESCRIPTION

orbdetect will read waveform data from an input ORB, run
STA/LTA detectors on one or more channels of the waveform
data and write the detection states as Datascope database packets
into an output ORB. For each channel of data, orbdetect will
prefilter the data into a specified frequency pass band. Orbdetect
can run multiple detections on the same channel of data with
different frequency pass bands.

2002 Antelope Workshop

orbdetect – command line arguments
-v Verbose output flag

-select expr
An ORB select expression for the input waveform ORB. This argument is optional. If

not specified, then no input selection is done (all ORB packets are passed).

-tstart start_time
A start time for reading the waveform data. The argument is optional. If not specified, then

data will start at the next most recent packet.

-twin minutes
A time window for reading waveform data in minutes. This argument is optional. If not

specified, then data will be read indefinitely.

-pf pfname
Name of program parameter file. The actual parameter file name is pfname.pf. If this is not

specified, then the default pfname is "orbdetect".

-out orbout
The name of an output ORB. orbdetect will write out the detection states as detection table

Datascope packets. This argument is optional. If not specified, then the detection
states are not output.

orbname
The name of the input ORB containing the waveform data. This argument is required.

dbname
The name of a Datascope database that is used to perform the foreign keys mapping from

incoming SEED net-sta-chan-loc codes to output CSS3.0 sta-chan codes (see
foreign(3) man page). This argument is required.

2002 Antelope Workshop

orbdetect – parameter file

• Global defaults section
– Detailed default processing parameters for all channels

(averaging type, time windows, gap processing, filter
coefficients, detection thresholds, latency parameters, etc.)

• Channel processing list
– A list of SEED net_sta_chan[_loc] UNIX regular expressions

that are matched against incoming waveform packet SEED
codes

• Single channel overrides
– A set of associative arrays with SEED net_sta_chan[_loc]

codes as keys and any of the parameters from the global
defaults section as entries within the arrays. These are used to
“individualize” the parameters for each channel of data.

2002 Antelope Workshop

orbdetect – parameter file example
Parameter file for orbdetect

Following are required and are used as overall defaults

ave_type rms # Method for averaging (rms or filter)
sta_twin 1.0 # STA time window
sta_tmin 1.0 # STA minimum time for average
sta_maxtgap 0.0 # STA maximum time gap
lta_twin 10.0 # LTA time window
lta_tmin 5.0 # LTA minimum time for average
lta_maxtgap 4.0 # LTA maximum time gap
nodet_twin 2.0 # no detection if on time is less than this
thresh 5.0 # detection SNR threshold
threshoff 2.5 # detection-off SNR threshold
det_tmin 20.0 # detection minimum on time
det_tmax 600.0 # detection maximum on time
latency 30 # input packet pipe latency (per channel) in packets
filter none # default filter
iphase D # phase code for onset times
maxfuturetime 600.0 # Maximum number of seconds after system wall clock
otime_noise_tfac 1.0 # ratio of noise tapering time constant to
 # sta_twin for onset time estimation
otime_signal_tfac 1.0 # ratio of signal tapering time constant to
 # sta_twin for onset time estimation

At least one default band must be set set up in the
bands table parameter values override default values
above for each band

bands &Tbl{ # These are the different frequency bands
 &Arr{ # This is the first frequency band
 sta_twin 5.0
 sta_tmin 5.0
 sta_maxtgap 0.5
 lta_twin 50.0
 lta_tmin 25.0
 lta_maxtgap 4.0
 filter BW 0.5 4 1.2 4 # Butterworth 0.5-1.2 Hz bandpass
 iphase Dtel
 }
 &Arr{ # This is the second frequency band
 filter BW 3.0 4 0 0 # Butterworth 3 Hz highpass
 iphase Dloc
 }
}

At least one data channel must be specified in the
netstachanlocs table

netstachanlocs &Tbl{ # this is the channel processing list
 AZ_.*_BHZ # matches all stations with net AZ and chan BHZ
 IU_TUC_BHZ_00 # matches only net IU, sta TUC, chan BHZ, loc 00
}

Individual channel parameters may be overriden below -
following entries are optional

AZ_PFO_BHZ &Arr{ # overrides parameters for channel AZ_PFO_BHZ
 thresh 10.0
 threshoff 5.0
}

2002 Antelope Workshop

orbdetect – notes
• SEED to CSS3.0 name mapping

– all ORB waveform packets use SEED naming convention (globally unique)

– all database tables use CSS3.0 naming convention (sta-chan only, no net and loc)

– “foreign keys” tables (snetsta and schanloc) are used to define this mapping

• waveform filtering
– digital recursion filtering (simple, fast, robust and stable)

– preload recursion “past” values (removes transients due to 0th order discontinuities)

– general Butterworth filter (BW low_freq low_poles high_freq high_poles)

• waveform packet timing issues
– time-ordered packet “pipe” used to handle out-of-time-order packets

– reject packets with future time stamps

• restarting
– parameter file read only once at program startup

– no “state” file, starting point controlled manually using –tstart command line
argument

2002 Antelope Workshop

orbdetect – basic data processing sequence
For each incoming waveform ORB packet:

1. Read and unstuff packet

2. For each ORB packet channel:
1. Match against regular expressions in netstachanlocs table

2. Reject packet-channel if time > now() + maxfuturetime

3. Push packet-channel into appropriate packet-channel pipe

4. Pop available packet-channels from packet-channel pipe. For each:
1. For each frequency band:

1. Filter data

2. Compute time-domain LTA function

3. Compute time-domain STA function

4. Compute time-domain ratio1=STA/LTA function

5. Send ratio1, LTA, STA functions and filtered data function to detection
processor and onset time estimator

2002 Antelope Workshop

orbdetect – notes on basic data processing
• All processing is data-packet driven (no timeouts, lots of

buffering)
• Channel processing is dynamic
• STA, LTA gap/edge processing:

– Controlled by sta_tmin, sta_maxtgap, etc. parameters
– For each time sample, averages are marked with a special “undefined”

value if the gap parameters are exceeded

• ratio1=STA/LTA function processing:
– STA and LTA averaging time windows overlap (stable at edges and gaps)
– If either STA or LTA sample values in ratio are marked as “undefined”,

then the ratio1 sample value is marked as “undefined”

LTA
STA

ratio1

2002 Antelope Workshop

orbdetect – detection processing

thresh

threshoff

ratio1

ratio2

filtered data

STA
LTA

detection
on

detection
off

onset (pick)
time

LTA

STA

look for onset time here

compute ratio2 noise floor here

2002 Antelope Workshop

orbdetect – notes on detection processing
• When ratio1(t) > thresh, a detection is opened, its start time is

set and the value of LTA(t) is saved in LTA_hold

• After a detection has started, ratio1(t) is recomputed as
STA(t)/LTA_hold and is continuously checked to see if
ratio1(t) < threshoff

• When ratio1(t) < threshoff, the detection is closed and ratio1(t)
is computed again as STA(t)/LTA(t)

• If the detection duration is < nodet_twin, then the entire
detection, including its associated onset time estimate, is
ignored and nothing is output

• The detection off time is subject to the limitations imposed by
the det_tmin and det_tmax parameters

2002 Antelope Workshop

orbdetect – onset (pick) time estimation
• A new ratio2(t) function is computed when there is sufficient data available after a detection

has started.
• ratio2(t) is a true signal-to-noise ratio based upon the ratio of time-abutting signal and noise

windows.
• Both signal and noise functions are computed by convolving the square of the filtered data

with an exponential time function (one pole low-pass filter).
• The noise function is computed using recursive digital filtering in the forward time direction

and the signal function is computed using recursive digital filtering in the reverse time
direction.

• The time constants for both filters are nominally the same as sta_twin. This can be
overridden with the otime_signal_tfac and otime_noise_tfac parameters.

• The noise function is limited by a noise floor value that is computed from the first half of the
LTA time window at the detection start time (in order to stabilize the ratio2(t) function).

• The onset time is chosen as the time when ratio2(t) is at its maximum value within a time
window from the detection on time – 0.5*lta_twin + sta_twin to the detection in time +
sta_twin.

ratio2

STA

signal convolution function

noise convolution function

2002 Antelope Workshop

orbdetect – output

• Rows in the detection table as ORB packets (/db/detection srcname)
are written to the output ORB in as close to real-time as possible

• The detection table is defined in the rt1.0 schema, an extension to
the css3.0 schema

• For each channel-frequency band, each detection state change (ON
and OFF) are written out as separate detection rows. In addition, the
onset (pick) time estimate is also written as a separate detection row.
The field state within the detection table is used to indicate the
detection state changes and the onset time estimate

• A signal-to-noise ratio is also stored in each detection row. This
represents the maximum signal-to-noise that was measured during
the detection.

2002 Antelope Workshop

orbdetect – output example

2002 Antelope Workshop

orbdetect – detection glyphs in orbmonrtd

2002 Antelope Workshop

orbtrigger

SYNOPSIS
orbtrigger [-v] [-tstart start_time] [-target_orbassoc torbassoc]

 [-pf pfname] [-out orbout] orbname

DESCRIPTION

 orbtrigger will look for seismic events by reading detection table
rows from an input ORB, and looking for detection concurrency
over a specified set of stations. If a candidate event is found, then
orbtrigger will write a single parameter file object per event, as
an ORB packet, targeted for orbassoc. Each of these parameter
file ORB packets contains a candidate pick list with onset time
estimates that are to be used by orbassoc.

2002 Antelope Workshop

orbtrigger – command line arguments
-v Verbose output flag

-tstart start_time
A start time for processing the detection ORB packets. The argument is

optional. If not specified, then orbtrigger will start with the next most recent
packet.

-target_orbassoc torbassoc
A target name for the parameter file packet that is targeted for orbassoc. The

default is "orbassoc".

-pf pfname
Name of program parameter file. The actual parameter file name is pfname.pf. If

this is not specified, then the default pfname is “orbtrigger".

-out orbout
The name of an output ORB. orbtrigger will write out the network trigger as

parameter file objects targeted for orbassoc. This argument is optional. If
not specified, then no ORB output occurs.

orbname
The name of the input ORB containing the detection rows. This argument is

required.

2002 Antelope Workshop

orbtrigger – parameter file example
#
Parameter file for orbtrigger

twin 30.0 # This is the concurrency time window in seconds. Detections on at
 # least nstations stations must occur within twin seconds in order
 # for a network trigger to occur.

nstations 5 # The minimum number of stations thershold. Detections on at
 # least nstations stations must occur within twin seconds in order
 # for a network trigger to occur.

latency 20.0 # This is amount of time in seconds that orbtrigger will wait for
 # inter-channel data latency.

maxwaittime 0.0 # The amount of time in seconds to wait before outputing the parameter
 # file object targeted for orbassoc.

maxdettime 120.0 # maximum time interval in seconds for an input detection to be on
detlatency 300.0 # This is a time latency value in seconds that is used in conjunction

 # with "maxdettime" above to determine when an input detection
 # should be closed.

stachans &Tbl{ # List of station-channels for processing.
 BZN .*
 CRY .*
 ELKS .*
 FRD .*
 GLAC .*
 KNW .*
 LVA2 .*
}

2002 Antelope Workshop

orbtrigger – basic data processing sequence
For each incoming /db/detection ORB packet:
1. Read and unstuff packet
2. Match sta-chan against regular expressions in stachans table
3. Perform detection buffer processing using just this detection row
4. Perform network trigger processing using all existing detection buffers

NOTES:
• CSS3.0 naming conventions used throughout (i.e. no SEED net or loc

codes)
• Restarting

– parameter file read only once at program startup
– no “state” file, starting point controlled manually using –tstart command line

argument

• All processing is ORB-packet driven (no wall-clock timeouts, lots of
buffering)

• Station-channel-filter processing is dynamic

2002 Antelope Workshop

orbtrigger – detection buffer processing
Objective: Assimilate individual incoming detection rows into
orbtrigger detection buffers for each station-channel-filter:
• Each orbtrigger detection buffer contains all of the states for a single

detection (i.e. normally, three incoming detection rows make up a single
orbtrigger detection buffer – ON, onset time, OFF)

• “Missing” detection rows are handled with the maxdettime and detlatency
parameters:

– Missing detection rows can occur whenever orbdetect is stopped (or
dies) or any other situation where the flow of /pf/detection ORB
packets is interrupted

– For each new detection row, its time is compared against all currently
open orbtrigger detection buffers:

• Detection buffers with times that are more than maxdettime +
detlatency seconds before the new detection row time are marked
as being “expired” and are closed out allowing trigger processing
to continue with these buffers

2002 Antelope Workshop

orbtrigger – network trigger processing
Objective: Scan all orbtrigger detection buffers to create/modify a network
trigger and output an event pick list when appropriate:

BZN-BHZ

CRY-BHZ

FRD-BHZ

KNW-BHZ

PFO-BHZ

RDM-BHZ

SND-BHZ

WMC-BHZ

twin trigger opened at this time for nstations = 5

trigger on time trigger off time

All /db/detection onset times in this range go
into pick list (for maxwaittime = 0)

trigger closed at this time

2002 Antelope Workshop

orbtrigger – notes on network trigger processing

• Only one network trigger at a time
• A trigger is opened when the detection ON times from nstations stations

occur within a time duration of twin, the trigger ON time is set to the
earliest detection ON time that initiated the trigger

• After a trigger is opened, it continues to accumulate detection buffers
until there are no detection buffers with overlapping times, at which time
the trigger is closed and its OFF time is set to the latest detection buffer
OFF time

• While a trigger is open, orbtrigger accumulates all of the detection onset
time estimates into an internal pick list buffer

• The internal pick list buffer is written to the output ORB as a parameter
file packet when:

– The trigger is closed, if maxwaittime = 0, or
– A new detection time > trigger_ON_time + maxwaittime
– Note that once the pick list is output, it will not be output again until a new

trigger is opened

2002 Antelope Workshop

orbtrigger – output /pf/orbassoc pick list
arrivals &Tbl{
 BAR BHZ Dl 1023647045.63560 68.69000
 BAR BHZ Dt 1023647045.48560 58.50000
 BZN BHZ Dt 1023647049.70000 13.48000
 CRY BHZ Dt 1023647055.30000 18.73000
 DGR BHZ Dl 1023647059.99910 18.19000
 DGR BHZ Dt 1023647054.44910 32.31000
 FRD BHZ Dl 1023647049.02500 10.88000
 FRD BHZ Dt 1023647049.30000 13.22000
 GLA BHZ Dl 1023647037.76060 75.61000
 GLA BHZ Dt 1023647037.81060 119.94000
 JCS BHZ Dl 1023647045.73380 241.03000
 JCS BHZ Dt 1023647047.33380 50.17000
 KNW BHZ Dl 1023647052.12500 8.88000
 LVA2 BHZ Dl 1023647047.42500 30.58000
 LVA2 BHZ Dt 1023647047.40000 24.31000
 MONP BHZ Dl 1023646931.10000 5.12000
 MONP BHZ Dl 1023647043.42500 77.79000
 MONP BHZ Dt 1023647042.70000 102.69000
 PLM BHZ Dl 1023647050.51180 20.99000
 PLM BHZ Dt 1023647054.16180 35.24000
 RDM BHZ Dt 1023647058.02500 16.68000
 SND BHZ Dl 1023647049.95000 16.80000
 SND BHZ Dt 1023647050.10000 6.99000
 SOL BHZ Dt 1023647055.12500 13.14000
 TRO SHZ Dl 1023647048.10000 8.45000
 TRO SHZ Dt 1023647048.00000 12.60000
 WMC BHZ Dt 1023647050.67500 12.71000
}

2002 Antelope Workshop

orbassoc

SYNOPSIS
orbassoc [-start {pktid|time|OLDEST}] [-number number] [-nowait]
 [-select expr] [-target_orb2dbt torb2dbt]
 [-target_orbmag torbmag] [-pf pfname]
 [-auth author] [-dbnextid dbnextid]
 orbin orbout ttgridf1 [ttgridf2 [...]]

DESCRIPTION
 orbassoc is an ORB client program that continuously looks for candidate pick lists

for event association contained in ORB parameter file packets, as produced by
orbtrigger. For each of these pick lists, orbassoc searches over one or more
spatial grids for a candidate hypocenter that produces theoretical travel time to
each station that most closely matches the observations. Both P and S travel times
can be used. If a suitable match is found to the observations, then the associated
arrivals, including time and phase information, are written to an output ORB as
either Datascope database packets (arrival rows), along with the associations
(assoc rows) and the associated location (event and origin rows), or all of the
database info is encapsulated into a single special parameter file packet destined
for further processing by orb2dbt.

2002 Antelope Workshop

orbassoc – command line arguments
-tstart {pktid|time|OLDEST}

A start time for processing the pick list ORB packets from orbtrigger. The argument is optional. If not specified, then orbassoc will start with
the next most recent packet.

-number number
How many input parameter file packets to process. This argument is optional. If this is not specified, then there will be no limit on the number

of parameter object packets processed.
-nowait

If this is specified, then orbassoc will exit when the ORB read pointer gets to the most recent parameter file packet. If not specified, then
orbassoc will wait for new parameter object packets to arrive indefinitely.

-select expr
An ORB select expression that is applied to all ORB reads. The name should be consistent with the orbassoc target names specified in

orbtrigger. The default is "/pf/orbassoc".

-target_orb2dbt torb2dbt
A target name for the output parameter file packet that is targeted for orb2dbt. The default is “orb2dbt".

-target_orbmag torbmag
A target name for the output parameter file packet that is targeted for orbmag. The default is “orbmag".

-pf pfname
Name of program parameter file. The actual parameter file name is pfname.pf. If this is not specified, then the default pfname is “orbassoc".

-auth author
An author name to be filled into the database auth fields. If this argument is not specified, then the default author is "orbassoc".

-dbnextid dbnextid
Datascope database name of database that contains the lastid table used for assigning new evid, orid and arid values for the new database

packets. This argument is optional. If specified, then the database rows are written to the output ORB and the orbmag parameter file
packet is also written. If not specified, then the results are encapsulated into a single parameter file and the orbmag parameter file
packet is not output.

orbin
The name of the input ORB containing the pick list parameter file packets from orbtrigger. This argument is required.

orbout
The name of an output ORB. This argument is required. All new database packets and/or parameter file packets are written here.

ttgridf1 ttgridf2 …
Names of travel time grid files, as produced by the program ttgrid. At leat one file name must be specified.

2002 Antelope Workshop

orbassoc – modes of operation
• In “legacy” mode orbassoc writes out event, origin, assoc and arrival database ORB packets as well as a

parameter file packet targeted for orbmag. In this mode:
– orb2dbt simply passes on the database rows to the archive database without modifications (its normal

mode of operation for all database tables)
– orbassoc is responsible for procuring new and unique database ids: evid, orid and arid
– The –dbnextid orbassoc command line argument must be specified. The dbnextid database must contain

a lastid table which is used to assign new database ids. In many cases this database will be managed by a
database id-server.

– orbassoc will also write out a special ORB parameter file packet with all of the info necessary for
orbmag to compute magnitudes.

– Only a single associator (orbassoc) may be run. This is because multiple simultaneous associators can
often put out the same exact arrivals and origin estimates of the same event which would not be properly
merged by orb2dbt.

• In “multiple associator” mode orbassoc encapsulates all of the event, origin, assoc and arrival database info
for each event into a single ORB parameter file packet that is targeted for orb2dbt. In this mode:

– orb2dbt performs a full event association with existing events in the archive database using the event
info contained in the /pf/orb2dbt parameter file packets from orbassoc

– orb2dbt is responsible for procuring new and unique database ids
– The –dbnextid orbassoc command line argument must not be specified, since orbassoc has no

requirement to assign unique database ids (that is now done by orb2dbt). In fact the existence or absence
of this command line argument is the switch used by orbassoc to determine which operational mode it is
to use.

– orbassoc will not write out a special ORB parameter file packet with all of the info necessary for
orbmag to compute magnitudes. This is done now by orb2dbt.

– Multiple simultaneous associators (orbassoc) may be safely run. This is because the conflicts that arise
with multiple associators will be properly resolved by orb2dbt.

2002 Antelope Workshop

orbassoc – ttgrid files
• All phase travel times are read by orbassoc from one or more travel time grid

files, also known as ttgrid files.
• Each ttgrid file contains one or more travel time grid objects.
• A single travel time grid object is composed of sets of travel times in binary

form corresponding to a particular set of receiver locations and a grid of
source locations for one or more seismic phases.

• orbassoc does no on-the-fly travel time computations. All travel times come
from ttgrid files. This results in efficient operation and decoupling of the
complexities of computing travel times from those of doing the associations.

• Currently the only software available in the Antelope release for computing
ttgrid files is the program ttgrid. The ttgrid program currently supports the
computation of 2D grids, 3D grids and slowness-based teleseismic grids.

• The ttgrid file concept provides for completely general specification of travel
times from grids of sources to sets of receivers. In theory, these files could
contain travel times with complex receiver-source corrections and employ
full 3-dimensional wave propagation models.

2002 Antelope Workshop

orbassoc – parameter file example
#
Parameter file for orbassoc

grid_params &Arr{
local &Arr{

nsta_thresh 6 # Minimum allowable number of stations
nxd 11 # Number of east-west grid nodes for depth scans
nyd 11 # Number of north-south grid nodes for depth scans
cluster_twin 2.5 # Clustering time window
try_S no # yes = Try observations as both P and S

 # no = Observations are P only
drop_if_on_edge yes # Drop if solution is on the edge of the grid

}
regional &Arr{

nsta_thresh 6 # Minimum allowable number of stations
nxd 11 # Number of east-west grid nodes for depth scans
nyd 11 # Number of north-south grid nodes for depth scans
cluster_twin 2.0 # Clustering time window
try_S no # yes = Try observations as both P and S

 # no = Observations are P only
drop_if_on_edge yes # Drop if solution is on the edge of the grid

}
tele &Arr{

nsta_thresh 6 # Minimum allowable number of stations
cluster_twin 2.0 # Clustering time window
try_S no # yes = Try observations as both P and S

 # no = Observations are P only
drop_if_on_edge no # Drop if solution is on the edge of the grid

}
}

2002 Antelope Workshop

orbassoc – parameter file notes
• The orbassoc parameter file must contain an associative array with

the name grid_params.

• The grid_params array must contain a set of associative arrays each
with the name of a grid contained in one of the ttgrid files. Grid
names are assigned to each grid when the ttgrid files are created
(normally by the program ttgrid).

• A single instance of orbassoc can process multiple travel time grids.
When more than one grid is being processed, orbassoc will chose the
single best solution from all of the grids, base upon the grid node with
the most number of associated stations and the smallest residual.

• This processing method allows the user to specify both local and
teleseismic source grids. orbassoc usually can correctly discriminate
between local and teleseismic events using this technique.

2002 Antelope Workshop

orbassoc – source grids

local regionalteleseismic

2002 Antelope Workshop

orbassoc – basic association processing
For each incoming /pf/orbassoc ORB packet:
1. Read and unstuff packet to get the pick list.
2. For each travel time grid object:

1. For each source location grid node:
1. Compute passoc(grid,x,y,z), a positive definite performance

function that will be used to determine the best source location.

2. Search for the source location that produces a
maximum value of passoc(x,y,z,grid).

3. Search for the grid and source location that
produces a maximum value of passoc(x,y,z,grid).

4. Output the corresponding location, arrivals and
associations.

2002 Antelope Workshop

orbassoc – passoc processing
For each grid-source location node:

1. All of the times in the pick list are reduced by the phase travel times to an equivalent
origin time.

2. These reduced pick times for each travel time phase are put into a reduced time list for
subsequent time-clustering analysis:

BZN

CRY

FRD

BZN

CRY

FRD

or
ig

in
al

sh
ift

ed

S shifts P shifts

reduced
time list

cluster_twin

mean value within cluster_twin defines event origin time
a standard deviation within this window is also computed

passoc(x,y,z,grid) is the number of unique
station picks within this window

2002 Antelope Workshop

orbassoc – example passoc(x,y,local)

2002 Antelope Workshop

orbassoc – notes
• In the time cluster analysis, an indexing scheme is used to insure that

only one pick per station is used

• For all x,y,z,grid where passoc(x,y,z,grid) is the same, the x,y,z,grid
that produces the smallest residual standard deviation is chosen as the
solution.

• Generally, the grid-source node search is a global search. However, it
is possible to constrain the search in depth for 3D grids using the nxd
and nyd parameters.

• For each grid, if the x,y,z solution is on the edge of the grid and the
drop_if_on_edge parameter is set to yes, then the solution for that grid
is disallowed.

• For each grid, if the number of stations in cluster_twin is <
nsta_thresh parameter, then the solution for that grid is disallowed.

2002 Antelope Workshop

Final thoughts
• Look at the ttgrid(1) man page to see how to make ttgrid files. Look at

the ttgrid_show(1) and displayttgrid(1) man pages to see how to
inspect ttgrid files. If there is interest in the user community, BRTT
could develop some more general methods for creating ttgrid files that
would allow users to employ their own travel time computation
methods.

• Look at the orbmag(1) man page to see how to compute magnitudes in
real-time. Also look at Nikolaus Horn’s orbampmag program
(orbampmag(1) man page), which provides a more generalized real-
time magnitude calculator.

• Look into setting up multiple associators by reading the orb2dbt(1)
man page.

• All of the basic processing algorithms are the same for dbdetect,
dbtrigger and dbgrassoc. These can be used effectively to “tune”
parameters for the real-time system.

