
What could possibly go
wrong?

What orb2db tries
to do

Read packet, append data to end of
accumulating waveform

Start new waveform every day

What can go wrong?

Missing packet: gap

Fill gap

Duplicate packet

Ignore packet

Out of order packet

Reorder packets

More problems

Meta data changes: calib, calper

Packets are not contiguous in time

Packet time drifts from computed
time

What happens?

Orb2db starts a new wfdisc record

Lots of database records slow
everything

Also starts a new mini seed record

Data compression may be expansion

Disk fills up

A solution:
cdorb2db

Reads packet

Inserts data into waveform file wherever it belongs

Time is truncated to fixed tick

Overlaps and gaps are not detected

Only one wfdisc record per day

Data is uncompressed but has fixed size

Can be compressed later by db2msd

Experience at BRTT is that these issues don't affect event
location

copying saved data
into ring buffer

copy into ring buffer:

sun 1300 pkts/second

anfexport: 4300 pkts/second

mac-mini 6900 pkts/second

xserve: 7100 pkts/second

xserve, ssd drive: 8000 pkts/second

cp of same packet file: 10 second vs 27 seconds, e.g. 22
kpkts/second

copying from ring
buffer: faster

cdorb2db: first time: 4.8 kpkts/sec

second time: 21.5 kpkts/sec

orb2db: first time: 15.3 kpkts/sec

second time: 10.75 kpkts/sec

practical example

copy packets into orb with
miniseed2orb

copy packets from orb with
orbmsd2days

17 Mbyte of miniseed

8 Mbyte orbserver

#!/bin/bash

cat <<EOF
Use miniseed2orb and orbmsd2days to transfer data
from one place to another.
EOF

ORB=:dq
DB=db/db
ORBBUF=/tmp/orbrt/
DATA=/opt/antelope/testdata/seed/XM_CACO_HHZ.msd
COPY=2005/005/XM_CACO_HHZ_.msd

rtmanage -lv <<EOF
orbserver -t -r -P $ORBBUF -s 4M -p $ORB orbserver
@2
orbmsd2days -S state/orbmsd2days -vv $ORB
@miniseed2orb -vv $DATA $ORB
@is_idle -v $COPY
cmp $DATA $COPY
@msdd $DATA
@msdd $COPY
@2
@miniseed2db -v 2005 db
@rm -rf $ORBBUF
@EXIT
EOF

 0.013322 orbserver: Will throttle incoming streams if reap streams fall behind

 0.013738 orbserver: orbserver orbserver Antelope Unreleased dev-64 Mac OS X 10.6.6
2011-03-19 0:10 <#>
 0.013759 orbserver: f31af1aa84d9deef5c7f71adcafe92847cf0973c (+8 files changed) <#>
 0.014513 orbserver: Sat Mar 19 13:12:31 2011 <#>

--> orbserver -t -r -P /tmp/orbrt/ -s 8M -p :dq orbserver <#>

 0.017743 orbserver: resetting ring buffer at open
 0.516849 orbserver: orb last initialized 3/19/2011 (078) 19:14:08.299
 0.516889 orbserver: 8.000 Mbytes packet buffer
 0.516903 orbserver: 0 of 22867 maximum packets
 0.516958 orbserver: 0 srcnames used of 10000 maximum
 2.332099 orbserver: 1 reaping clients(0 stalled), Lag is 0.179 => delay is 0.004
seconds, #pkts threshold is 22
 2.422653 orbserver: 1 reaping clients(0 stalled), Lag is 0.230 => delay is 0.006
seconds, #pkts threshold is 22
 2.615900 orbserver: 1 reaping clients(0 stalled), Lag is 0.052 => delay is 0.001
seconds, #pkts threshold is 22

 16.215799 orbserver: received signal #15=SIGTERM: Terminated -- Shutting down
 17.219643 orbserver: halted by signal #15

What happens depends on details, but

in case I’ll outline now,

expected 4280 packets, got 4027

what can happen is reader gets
stuck at trailing edge, starts
missing packets

when it starts doing that, orb2db
gets slower.

Might think the lesson is:

Make your orbservers large!

but for a real-time system, you want
everything (including the ring
buffers) to fit in memory at once.

if that’s not true, system may start
swapping, speed may be reduced by
factors of 100 or more

