

March 2011

orbwfproc - a generalized waveform processor
•  The continuous waveform processing analog to orbevproc
•  orbwfproc runs a set of “tasks” continuously, each task in its

own thread
•  Tasks communicate with each other via a set of managed FIFO

queues (described in pmtmanagedfifo(3))
•  Data objects passed between tasks are either task defined or are

objects that can be represented by ORB packets, such as
PktChannel waveform packets (see newPktChannel(3))

•  All tasks are currently written in c
•  New tasks can be added by users as long as they conform to the task

definition described in orbwfproc(5)
•  Tasks distributed in 5.1 release are import, export,

inspector, wftest, wffilter, wfgather, wfstack,
wfstats!

•  Note that the internal representation of data flowing through the
orbwfproc tasks is packet oriented instead of database oriented,
as in orbevproc!

March 2011

orbwfproc - array processing example

gather

stack

Input

ORB import

export
Output

ORB

wf_fifo

gather_fifo

stack_fifo

March 2011

orbwfproc - array processing example
This is the orbwfproc parameter file!
!
This is the list of processing tasks to be run!
!
wf_tasks &Tbl{!
 #task_name class_name parameters !input !output!
 import ! import ! import_params !- !wf_fifo !# import raw data from an ORB!
 gather ! wfgather gather_params !wf_fifo !gather_fifo!# form a gather!
 stack ! wfstack! stack_params !gather_fifo!stack_fifo !# stack over a grid!
 export ! export ! export_params !stack_fifo !- !# export the stack data to an ORB!
}!
!
These are parameters for each of the processing tasks!
!
import_params &Arr{ ! !# parameters for import task!

!input !orbdata ! !# input from orbdata tag in command line!
}!
!
export_params &Arr{ ! !# parameters for export task!

!output !orbout ! !# output to orbout tag in command line!
!subcode !STACK ! !# specify a subcode for the output ORB packet srcnames!

}!
!
gather_params &Arr{ ! !# parameters for gather task!

!. . .!
}!
!
stack_params &Arr{ ! !# parameters for stack task!

!. . .!
}!

March 2011

What does this orbwfproc do?
1.  Import raw waveform data from real-time ORB (import task)
2.  Form pre-filtered “gathers” of waveform channels for each array

into regularized channel-sample grids (gather task)
3.  Compute beams (stacks) over grids of horizontal vector slowness

values assuming planar wavefield characteristics; this is done for
each time sample over a grid of slowness values (stack task)

4.  Also compute power averages for each beam at each time sample
(power of the stack) plus power averages for each of the individual
array channels plus an average of the individual array channel
powers (stack of the powers) (stack task)

5.  Also compute “semblance” by dividing the beam power averages
by the stack of the individual channel power averages (stack task)

6.  Scan the semblance grids for the slowness vector that corresponds to
maximum semblance for each time sample (stack task)

7.  Compute azimuth and scalar slowness corresponding to maximum
semblance (stack task)

8.  Export beams as waveforms plus maximum semblance, azimuth and
scalar slowness as waveforms plus the semblance grids themselves
into ORB output packets (export task)

March 2011

March 2011

March 2011

Database import
•  The import task can be configured to read waveform data from a

Datascope database
•  The Antelope pktchannel2trace(3) utility is used to read all

waveform data for all channels over fixed time durations specified
by the time_slice_duration parameter in the import task
parameter file

•  All of the channels for each time slice are then converted to
PktChannel structures and put into the output FIFO

•  All waveform sample data is represented in the PktChannel
structures in floating point

•  dbwfproc will automatically configure import tasks to read
from databases

•  orbwfproc can configure import tasks to read from databases
by setting parameters in the import task parameter files

March 2011

Database export
•  The export task can be configured to write waveform data to a Datascope

database
•  The Antelope pktchannel2db(3) utility is used to write all waveform

data for all channels into output databases
•  The pktchannel2db(3) utility operates in a manner similar to

cdorb2db(1) - waveform data is written into regular timing grids in
fixed byte-per-sample formats and gaps are represented by special gap
sample values

•  The pktchannel2db(3) utility supports waveform output in both
integer and floating formats. The utility also provides adaptive output
buffering so that very latent data is heavily buffered to maximize
performance whereas low latency data is not buffered at all to preserve
minimum processing latency

•  Note that export tasks do not support the output of waveform data in
miniseed format

•  dbwfproc will automatically configure export tasks to write to
databases

•  orbwfproc can configure export tasks to write to databases by setting
parameters in the export task parameter files

March 2011

dbwfproc - waveform healing example

import export import
database

export
database

•  This configuration will heal a highly fragmented import waveform
database, with lots of wfdisc rows, data out of time order,
overlapping data, gaps, etc., into an export database with one wfdisc
row per channel per day.

•  This is equivalent to running dbreplay into an orbserver and
cdorb2db to produce the output database

•  Conversion to miniseed would require running db2mseed as a post
process, similar to cdorb2db

March 2011

dbwfproc - waveform resampling example

import export import
database

export
database

•  This configuration can be used to resample waveform data or to
filter waveform data in some other way and save the filtered data
into an export database.

•  The export task can be configured to morph the SEED codes so
that the data written to the export database has different SEED
codes than the import data

wffilter

March 2011

•  Systematic way of dealing with restarts
from a state file

•  Development of a wfdetect task class -
this will require exporting of non-
waveform data

•  Development of importsegment task
class used to import waveform segments
based upon detections or arrivals

•  Continued development of array processing
tasks

Future developments for orbwfproc

