
Discovering Datascope
A Relational Database Management System

Daniel Quinlan
BRTT, Inc.

Database?

Most collections of information could be
viewed as a database, eg my desk.

more organization: collection of waveform
files

more constraints: formal databases

relational is the most popular formal
database organization

Relational?

very simple

tables of records

records have fixed set of fields

fields each have single datum

A table is a “set”, not a list: order is
unimportant.

Every record in a table is unique.

fields+tables = schema

CSS3.0
Center for Seismic Studies, version 3.0

site/sitechan/sensor/instrument

wfdisc

arrival/assoc/origin/event

One place

A piece of information is found in only one
place.

lat/lon in site table

response in instrument table

Most important
Operations

sort

subset

join

What is a join?

for example, given an arrival pick, need to
know the location of station to use in event
location

ie, given station name and arrival time,
lookup the location of the station in the site
table.

consider new virtual table which combines
arrival and site table; each record has 1
arrival plus matching record from site table

Key Datascope concepts
schema is relatively static file describing
fields and tables in considerable detail.

creating database implicitly creates tables

tables are plain ascii fixed format files

Datascope is essentially a library of routines
implementing operations on a database, with
representations in a variety of languages:

c, perl, tcl/tk, shell, matlab, php, python(?)

schema fields
 fields are same across all tables in schema

Attribute lat
 Real (9)
 Format ("%9.4f")
 Null ("-999.0000")
 Range ("lat >= -90.0 && lat <= 90.0")
 Units ("Degrees")
 Description ("estimated latitude")
 Detail {
 This attribute is the geographic
 latitude. Locations
 north of the equator have
 positive latitudes.
 }
 ;

more information

schema tables
Relation site
 Fields (sta ondate offdate lat lon elev staname
 statype refsta dnorth deast lddate)
 Primary (sta ondate::offdate)
 Description ("Station location information")
 Detail {
 Site names and describes a point on the earth
 where seismic measurements are made (e.g. the
 location of a seismic instrument or array).
 It contains information that normally changes
 infrequently, such as location. In addition,
 site contains fields to describe the offset of
 a station relative to an array reference
 location. Global data integrity implies that
 the sta/ondate in site be consistent with the
 sta/chan/ondate in sitechan.
 }
 ;

note primary key information

dbhelp

relational operations

subset

dbsubset db.site ‘lat > 45’

sort

dbsort db.site sta

join

dbjoin db.arrival site

project/select

dbselect - sta lat lon elev staname

% dbsubset $db2.site 'lat > 45' | \
 dbsort - sta | \
 dbjoin - arrival | \
 dbselect - sta lat lon arid arrival.time chan
AKT 50.4348 58.0167 14364 793267845.36933 BHZ
AKT 50.4348 58.0167 14373 793267990.83460 BHN
AKT 50.4348 58.0167 14377 793268086.67671 BHN
ARU 56.4302 58.5625 14366 793267899.68275 BHN

Keys
primary key:
some subset of fields in table which uniquely
identify a record

alternate key:
typically a shorthand “id” field

eg, in arrival

sta time (physical meaning)

arid (alternate key, shorthand id)

remainder of fields are info

join

generally, find records from two tables
where some condition is met

for arrival and site, we want

sta codes same

arrival time matches range ondate::offdate

natural join
Datascope infers the join keys based on key
names and some heuristic rules

% dbjoin -v $db2.arrival site > /dev/null
Beginning with demo2.arrival
 joining to table site with keys:
 sta
 time == ondate::offdate
 result has 246 records

for each record in arrival, find record(s) in
site which match sta, time inside
ondate::offdate

ranges

time ranges are important in various tables

join keys over ranges are complex, eg
wfdisc-site:

 (time > ondate and time < offdate)
 or (ondate > time and ondate < endtime)

conversion required

dbe demo

dbe $db2
open origin
arrange
record view
time formatting
map
zoom out/in
projections

search mb > 2
subset mb > 2
open site
sort by sta
sort by distance
could run map
open arrival
join to site (show join keys)
graph amp vs per, show log/log
graph amp vs time
show saving text

open instrument
show response
open response file
open wfdisc
show trace
open origin
show associated waveforms

graphics &Arr{
 wfdisc &Tbl{
 Waveforms trdisp -
filenames dbselect - extfile() | xargs ls -l
 }
 instrument Response dberesp -
 stage Response dberesp -
 site Map dbmap_gui -
 origin Map dbmap_gui -
 origin Waveforms origin_display -
 }

~/.dbe.pf

@db = dbopen_table ($db, "r") ;
$db[3] = 0 ;
eval {
 ($prefor) = dbgetv(@db, qw(prefor)) ;
} ;
if (! $@) {
 @dborigin = dblookup (@db, 0, "origin", 0, 0) ;
 @db = dbjoin (@db, @dborigin) ;
 @db = dbsubset(@db, "prefor==orid") ;
}
$n = dbquery(@db, dbRECORD_COUNT) ;

if ($n < 1) {
 print STDERR "no origin found\n" ;
 exit 1 ;
}

@dbassoc = dblookup (@db, 0, "assoc", 0, 0) ;
@db = dbjoin (@db, @dbassoc) ;
@dbarrival = dblookup (@db, 0, "arrival", 0, 0) ;
@db = dbjoin (@db, @dbarrival) ;

$max = dbex_eval(@db, "min(arrival.time)") ;
$db[3] = 0 ;
($min) = dbgetv(@db, qw(origin.time)) ;
$min -= 10 ;
$max += 30 ;

$n = dbquery(@db, dbRECORD_COUNT) ;
for ($db[3] = 0 ; $db[3] < $n ; $db[3]++) {
 $sta = dbgetv(@db, qw(sta)) ;
 push(@sta, $sta) ;
}
$subset = sprintf("sta =~ /%s/", join('|', @sta)) ;

$dbname = dbquery(@db, dbDATABASE_NAME) ;
$cmd = "trdisp -s '$subset' $dbname" ;
print STDERR "$cmd\n" ;
system ("$cmd &") ;

database integrity

dbverify

field ranges

uniqueness

referential integrity for ids

external file existence

other tests

example:

Use dbverify to examine overlaps in wfdisc

dbverify -tk abc.wfdisc
Keys for records #2528 and #2529 in table wfdisc match:
 sta AAK | AAK
 chan BHE | BHE
 time 4/07/1999 23:38:50.000 | 4/07/1999 23:38:54.000
 endtime 4/07/1999 23:38:54.975 | 4/07/1999 23:38:58.975
Keys for records #2530 and #2531 in table wfdisc match:
 sta AAK | AAK
 chan BHE | BHE
 time 4/07/1999 23:39:00.000 | 4/07/1999 23:39:06.000
 endtime 4/07/1999 23:39:09.975 | 4/07/1999 23:59:59.975

open (INPUT, "dbverify -tk $input |") ;
$overlaps = "/tmp/overlaps$$" ;
@db = dbopen ($overlaps, "r+") ;
@db = dblookup (@db, 0, "wfdisc", 0, 0) ;
dbtruncate (@db, 0) ;
while (<INPUT>) {
 if (/^ time/) {
 ($lbl, $time_dt1, $time_t1, $sep, $time_dt2, $time_t2) =
 split (' ') ;
 } elsif (/^ endtime/ && $chan =~ /.*Z.*/) {
 ($lbl, $endtime_dt1, $endtime_t1, $sep, $endtime_dt2,
 $endtime_t2) = split (' ') ;
 $time = &max(str2epoch ("$time_dt1 $time_t1"),
 str2epoch ("$time_dt2 $time_t2")) ;
 $endtime = &min(str2epoch("$endtime_dt1 $endtime_t1"),
 str2epoch("$endtime_dt2 $endtime_t2")) ;
 $db[3] = dbaddnull (@db) ;
 $nsamp = ($endtime-$time);
 $result = dbputv (@db, "sta", $sta, "chan", $chan,
 "time", $time, "endtime", $endtime,
 "nsamp", $nsamp, "samprate", 1) ;
 } elsif (/^ sta/) {
 ($lbl, $sta) = split (' ') ;
 } elsif (/^ chan/) {
 ($lbl, $chan) = split (' ') ;
 }
}
system ("trdisp $overlaps") ;

Other relational operations
dbtheta
arbitrary join

complementary anti-join operations
dbsever -- eliminate one table from join
dbseparate -- separate records for one
table of view

dbnojoin
records from table which don’t join

dbgroup
group adjacent records from sorted view
with matching fields

Command line operations

dbdiff
compare two databases or tables

dbcp
copy a database or table

dbset
change value (often a key) globally

dbunjoin
create new database from view

More commands

dbaddv -i
add records to a table from command line, or
script

dbdesign
edit a schema

dbcalc
utility for evaluating expressions

expressions
sin, cos, tan, atan, log, exp, floor, ceil, min, ...

time conversion

seismic travel time

spherical geometry: distance, azimuth

regular expressions

concatpaths(a,b), dirname, basename,

strlen(), substr(), null(“field-name”)

execute command with [“wc”, extfile()]

What is a view?
a table of database pointers, each pointer
identifying a single record from a “base”
table

all fields for base tables in view are present

one exception: in a grouped view, some of
the fields are represented directly in the
view, and there is always a “bundle” pointer
which identifies a range of records in
another view.

Why not SQL?

First problem: convince seismologists to use
relational database (problem still not solved)

Easy to understand

Easy to use

SQL tends to hide rather than illuminate

more expressions and operations

historically, other options limited, expensive
eg, Oracle, Sybase

