Automatic Magnitude Determination

by Wolfgang A. Lenhardt \& Nikolaus Horn

AUG - Trieste, 2004

Content:
Moment Magnitude
Other Magnitudes

Moment Magnitude - Steps

1. The location of the earthquake must be known via gridassoc, dblocsat or genloc
2. Determine the theoretical P-wave arrival
3. Determine the theoretical S-wave arrival
4. Cut out a segment which starts at p-arrival minus s-p-arrival and ending at s-arrival $+s-p$-arrival.
5. Apply the "Transfer Function of the system". This transfer function must be either known or estimated (assured by comparative measurements).
6. Select filter
7. Estimate the average of the ground movements prior to the theoretical P-wave arrival from the noise
8. Select an appropriate S-wave time window (such as S-P-time*0,1) beginning at Stheo - (Stheo-Ptheo)*0.1 and ending at * (Stheo-Ptheo)*0.1
9. Apply a baseline correction to the recorded data stream (subtracting it) based on 5 seconds of data prior to the p-wave arrival (see point 4). Apply Cosine-taper.
10. Calculate the Fourier Spectrum
11. Determine the plateau of the spectrum, corner frequency, etc. and finally the moment magnitude

Time Window

Get theoretical P- and S-wave arrival based on hypocenter (epicentral distance and depth) from travel-time table.

Cut out trace according to large time window (green) ranging from " P minus $S-P$ " until " S plus S-P".

Apply transfer function to get the true velocity trace from the selected time-window (green).

The reason for the large time window is to minimize filtereffects when cutting out the noise- and S-wave time-series.

Choosing the Filter

Analyse noise by determining Nmin (Noise minimum), Nmax (Noise maximum), and average of the noise from a timewindow prior to the theoretical
p-wave arrival
and determine average,
E.g. from p-wave arrival minus
$\left(S_{\text {theo- }}\right.$ Ptheo) ${ }^{*} 0.5$ until p-wave
arrival minus(Stheo-Ptheo)*0.1
Select an appropriate S-wave time window (such as S-Ptime ${ }^{*} 0,1$) beginning at Stheo -(Stheo-Ptheo) 0.1 and ending at *
(Stheo-Ptheo)*0. 1
Analyse S-wave (get min and max and determine Smax Smin).)

If hypocentral distance < 300 km
$1-10 \mathrm{~Hz}$ else
0.05 and 10 Hz

Determine again min, max and average of the noise and of the S-wave.

If Smax-Smin $<2^{*}$ (Nmax $N \mathrm{Nin}$) then

Forget it, else
select the appropriate S-wave time window again (such as S-P-time* 0,1) beginning at Stheo -(Stheo-Ptheo) 0.1 and ending at * (Stheo-Ptheo) ${ }^{*} 0.1$

Spectra - Classical Approach

Corner frequency

1. Subtract average noise from velocity trace
2. Integrate velocity trace giving the displacement or apply the Transfer Function and correct directly for displacement
3. Determine spectrum from displacement trace

Seismic moment

$$
M_{0}=4 \pi \rho V_{S}^{3} \Omega_{0} R_{c}
$$

with a radiation factor
$R_{C}=0.55$ for P-waves and $R_{C}=0.63$ for S-waves,
shear wave velocity $V_{S}=3400 \mathrm{~m} / \mathrm{s}$, density $=2700 \mathrm{~kg} / \mathrm{m}^{3}$

Source radius $\quad r=\frac{k V_{S}}{2 \pi f_{0}}$

with a source shape factor ' k ' of $=$ e.g. 2.34 (Brune)
Stress drop

$$
\sigma=\frac{7 M_{0}}{16 r^{3}}
$$

Spectra - Trick

I suggest the following ,trick' when automatically calculating the corner frequency:
Smooth spectrum! Don't forget that we are dealing the double logarithmic scales.
Start an iteration from the Nyquistfrequency ($2 /$ sampling rate per second) down to the lowest frequency defined by the length of the selected time window (2/time window length) thus moving f_{0}.

1. Divide the spectra into a left (red) and a right (blue) part
2. Determine the variance of the left part with a fixed slope and determine the variance of the right part, while the slope must be -2 (Brune's model).
3. While moving f_{0} determine the sum of both variances (left and right side) and find their minimum.
The smallest sum of variances indicates the desired corner frequency ' f_{0} '.

Note: Watch out for significance! Usually the left side has much less data than the right side...

Spectra - Alternative Approach

1. Subtract average noise from velocity trace
2. Determine spectrum from velocity trace $V(f)$ velocity-trace
3. Integrate velocity trace giving the displacement
4. Determine spectrum from velocity trace $D(f)$ displacement-trace

$$
\begin{aligned}
& S_{V 2}=2 \int_{0}^{\infty} V^{2}(f) d f ; \longleftrightarrow S_{D 2}=2 \int_{0}^{\infty} D^{2}(f) d f \\
& \Omega_{0}=2 S_{V 2}^{-1 / 4} S_{D 2}^{3 / 4} \\
& M_{0}=4 \pi \rho V_{S}^{3} \Omega_{0} R_{c} \quad \text { Seismic moment }
\end{aligned}
$$

$$
E_{S}=4 \pi \rho V_{S} S_{V 2}
$$

Seismic energy

$$
f_{0}=\frac{1}{2 \pi} \sqrt{\frac{S_{V 2}}{S_{D 2}}}
$$

Corner frequency
with a radiation factor
$R_{C}=0.55$ for P-waves and $R_{C}=0.63$ for $S-$ waves,
shear wave velocity $V_{S}=3400 \mathrm{~m} / \mathrm{s}$, density $=2700 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\sigma=\frac{7 M_{0}}{16 r^{3}}
$$

Stress drop

Comments

The final Moment Magnitude ' \mathbf{M}_{w} ' is defined by Hanks and Kanamori (1979) by (M_{0} in Newton-meters) assuming a constant stress drop of $1 / 10000$ of the shear modulus)

$$
M_{w}=0.667^{\star} \log \left(M_{o}\right)-6.1
$$

The following options should be possible when determining the source parameters manually:

1. Time Window
2. Method (classic, alternative)
3. Filter
4. Type of wave (P or S, accordingly some constants would change)

As a control, the program could compare the theoretical peak velocity and/ or peak displacement of the shear wave, which should be of the order of (R = distance) with the observed ones:

$$
\begin{gathered}
v_{\text {peak }}=\frac{R_{S}}{4 \pi \rho R V_{S}^{3}} 2 \pi f_{0}^{2} M_{0} \longleftarrow R_{S}=0.57 ; k=2.34 \\
v_{\text {peak }}=\frac{0.0686}{\rho R V_{S}} \sqrt[3]{\Delta \sigma^{2} M_{0}} \longleftarrow M_{0}=G D \pi r^{2} \\
D_{\text {peak }}=\frac{8.1 R v_{\text {peak }}}{V_{S}}
\end{gathered}
$$

Other Magnitudes

Definition: Amplitude = (Peak to Peak) / 2
Advantage: Automatic determination possible
Same algorithm for velocity and acceleration traces

Velocity data are used for mb, MI and Ms
Acceleration data are correlated against MI

Using Velocity Data

Using Acceleration Data

Summary

MI very robust if the total time window ($\mathrm{P} \& \mathrm{~S}$) is considered > circumventing focal pattern

Findings:
$\mathrm{MI}(\mathrm{S} 13)=\mathrm{MI}(\mathrm{BB})-0,3$
$\mathrm{mb}=\mathrm{Ms}-0,3$
Ms determined from surface waves require
the same constants as for MI.
Interpretations based on Z-components
are more stable than those from horizontal components.

Interpretations based on accelerations
require other constants than
those used for velocity traces > attenuation effect

Single Station Location

User Command:

dbarrparams

Gives:
azimuth, incidence angle, rectilinearity amplitude, period
first motion

Remark:

The incidence angle reflects the apparent angle of incidence.
It must be corrected via

$$
i_{\text {true }}=\arcsin \left(\left(v_{p} / v_{s}\right) * \sin \left(i_{\text {app }} / 2\right)\right)
$$

Hence, an assumption must be made for v_{p} / v_{s} for each station. The " v_{p} / v_{s} "-ratio can be verified by using nearby blasts, where $i_{\text {true }}$ should be $\sim 90^{\circ}$.

