Observations and Opportunities from the San Jacinto Fault

Frank Vernon UCSD 30 May 2014

Antelope User Group Baku, Azerbaijan

San Jacinto Ranger District, San Bernardino National Forest

Many local private landowners

National Science Foundation

SJFZ Project Team

San Jacinto Fault Zone

San Jacinto Fault Zone

- 1500

- 1000

Recent San Jacinto Fault Ruptures

Figure provided by Tom Rockwell

ANZA Network 1982-Present

-118°

ANZA and SCSN

2001 Aftershock Sequence

2005 Aftershock Sequence

San Jacinto Fault Zone Realtime Telemetry System

- Hardware
 - -Quanterra Q330 dataloggers
 - –Streckeisen STS-2, Trillium 240, Trillium 120 PH
 - -Guralp CMG40T 1 Hz
 - Episensor, Shallow Borehole
 Episensors
- Antelope Software Package
 - -Automatic detections
 - -Automatic locations
 - -Automatic magnitudes
 - -Analyst review

HPWREN topology – January 2012

155Mbps FDX 6 GHz FCC licensed

San Jacinto Fault Zone Realtime Virtual Observing Network

- Antelope Software for Real Time Data Integration
- Permanent Networks
 - -ANZA Seismic Network (24)
 - -Plate Boundary Observatory (8)
 - -Southern California Seismic Network (~30)
 - -UC Santa Barbara (3)
- PASSCAL
 - -5 Linear Fault Crossing Arrays
 - •45 total elements
 - -20 stand alone stations
- 8 Borehole Strainmeters
- 12 Permanent GPS

San Jacinto Fault Zone Data Management

- 7-8 Gbytes/day
- 21696 events since 1 Jan 2010
- 274141 arrivals since 1 Jan 2010
- Mw 4.7 event 11 March 2013
 - -20 stations with epicentral distance < 10 km
- 5154 events since 1 Jan 2013
- 228858 arrivals since 1 Jan 2013
- all need to be reviewed by analysts
- Needs reliable automatic processing

SJFZ 2011 7606 Events

SJFZ 2011 7606 Events

Current data

2014149:0

Streaming SVD - Rosenberger (2010)

- Implement automatic detection P and S phases
- Method based on a real-time iteration algorithm of Rosenberger (2010)
- Produces incidence angle and azimuth
- Separates the waveforms into their P and S components.
- Apply filters prior to the SVD

Allam et al. submitted

-20

-10

x [km]

-20

-20

-10

0 x [km] -20

20

10

-10

10

Ō

x [km]

20

Directivity Observations

- M_I 5.9 July 2010 aftershocks
- Hot Springs Cluster December 2011
- Kurzon et al. submitted

Conclusions

- Tomography results
 - -Low velocity zones in faults (esp. SJFZ)
 - -Low velocity in Basins (ST, SJB, SBB)
 - -Polarity/strength of contrasts vary along fault strike
 - -Areas of Low Vp/Vs correspond to regional plutons
- Seismicity
 - -No clear connection to surface fault traces
- -Distributed in volumes, not fault plans
- Magnitude completeness ~0.5 M
- Directivity
 - -Hot Springs cluster dominantly towards SE
 - -Trifurcation cluster either NW or N-NE (conjugate)
 - -Fault parallel directivity towards Anza Seismicity Gap