
Python/Qt Graphics
in Antelope

	
Danny Harvey

Boulder Real Time Technologies, Inc.
Antelope User Group Meeting, DPC, Rome

2016 May

1

Outline	

•  Introduction	
•  Review of Qt Graphics Introduced in 5.5 	
•  Rewrite of Qt Graphics for 5.6	
•  Python-Qt Bridge Development	
•  Coding Examples	
•  Plans for Further Development	

3

Designs and manufactures
sensors and digitizers – Provides
complete systems design,
installation and operations

Designs High-End
Sensors

Designs High-End
Digitizers

Antelope Software

INTRODUCTION – KMI TEAM	

Kinemetrics Systems Solutions	
•  Turnkey complete systems including enterprise-class computing centers and full

communications	
Kinemetrics Hardware Manufacturer	

•  World class Kinemetrics and Quanterra dataloggers	
•  World class Kinemetrics, Metrozet and Streckeisen sensors	

BRTT Software Developer	
•  World class acquisition software for all Kinemetrics hardware products	
•  Proven track record for large networks with difficult remote deployments

(USArray)	
•  World class, comprehensive automated and interactive seismic processing

software	
•  Data neutral architecture for support of non-seismic environmental monitoring

networks	
•  Extraordinary Command & Control capabilities with SOH displaying 	

Kinemetrics Services	
•  Complete systems procurement, installation and training including all aspects of

both hardware and software	
•  Network operations	

Qt Graphics in 5.5	

•  Cross platform API (MacOSX, LINUX, Windows, iOS,
Android, Windows Mobile)

•  Commercially supported and licensed (Qt Company)
•  High level support for modern graphics hardware (fonts,

spatial antialiasing, alpha blending, 3D rendering, etc.)
•  Very large user base (Nokia, KDE, Android apps,

embedded devices) plus sophisticated extensions such as
Marble

•  QTWebkit and QTWebsockets plus XML interpreter
•  Up to OpenGL API levels

Qt Graphics in 5.5	

What is Qt?	

•  Graphics/Interaction middleware
•  C++ API with ~500 classes
•  High performance at various levels
•  High functionality at various levels
•  Cross platform API with common application code

base for MacOSX/Cocoa, MaxOSX/Xquartz/X11,
Linux/X11, iOS, Android, Windows

•  Both GPL and commercially licensed through Qt
Company

5.5 Graphics Development	

•  BRTT stopped all graphics/GUI development that
uses X11/Tk. This included the TCL, perl and
python extensions we have used and developed in
the past.

•  Starting with 5.5, new graphics/GUI software will
be developed only using Qt

•  Although there is a dual GPU/commercial PyQt
python extension library for Qt, BRTT will not use
PyQt for the 5.5 release (we have experimented
with making our own version of PyQt)

•  New BRTT developed graphics/GUI software
written in c++

Qt-related Developments Introduced in 5.5	

•  New Qt-based library that introduces BRTT plot
extensions into Qt (not available for development by our
users)

•  New Qt-based dbe prototype
•  Rewrite of BRTT map display software
•  Support for continuously scalable display

transformations of image data such as NASA’s
Bluemarble earth image data

•  High performance map projection transformations
through threading

•  New BRTT Map Data (bmd) format that supports
multiple resolution and tiled image and vector data in
both native compressed and uncompressed formats

•  qtmapevents

5.5 - qtmapevents	

•  180 lines of c++ closed-source code
•  Because of commercial Qt licensing restrictions, no

user access to BRTT-developed Qt library
•  The 5.5 prototype version of the Qt graphics library

was developed through minimal changes to the
existing Tk/X11 based graphics library

5.5 - qtmapevents	

•  Complete rewrite
•  5.5 prototype version did not take advantage of c++

coding capabilities – 5.6 production version takes
full advantage of c++ coding capabilities resulting
in code maintainability

•  5.6 bqplot library consists of 20 new classes that
implement high level graphics function, 20,000 new
lines of code and documentation

•  Although derived from the old Tk/X11 buplot code,
this version adds major new coding constructs that
will ease development of further graphics
capabilites.

5.6 – first production version of Qt graphics
library - bqplot

5.6 – BQMapevents class	

5.6 – BQMapevents class	

•  All bqplot classes are documented
•  However, because of licensing restrictions, BRTT

cannot provide a c++ Qt development environment
as part of its distributions

•  We needed to extend the new Qt graphics to a
scripted environment like Python – would both ease
our development tasks and provide our users
development access to bqplot

5.6 – first production version of Qt graphics
library - bqplot

•  bqpy in the 5.6 release provides a Python
interpreter that will act as a bridge to the bqplot
graphics library

•  bqpy runs an embedded Python interpreter in one
thread and a special bqplot server in a separate
thread

•  The bqplot server accepts commands and data
through a serialized pipeline that is fed by the
Python interpreter in the other thread. Note that
with this design the Python interpreter and the
bqplot server could be in separate processes

Development of Python interpreter for
bqplot

•  qtmapevents in the 5.6 release is now a 70 line
open source Python script that runs bqpy (as
opposed to 180 lines of c++ code in the 5.5 version)

•  displayttgrid in the 5.6 release is now a 141 line
open source Python script that runs bqpy

•  dbevents_pre in the 5.6 release is now an open
source Python script that runs bqpy and provides
event graphics using the new Qt library

•  BRTT will continue to convert old Tk/X11 based
displays to Qt using this approach

•  We encourage our users to develop graphics apps
using this approach

Development of Python interpreter for
bqplot

from antelope.bqplot import *
from antelope.bueventview import *

def usage():
print "usage: qtmapevents [dbname]"

nargs = len(sys.argv)
if nargs != 1 and nargs != 2:

usage ()
sys.exit (1)

dbname = None
if nargs == 2:

dbname = sys.argv[1]

if dbname == None:
map = Map ("toplevel")

map.setdefaults ()
map.configure (\

 "latr", 0.0, \
 "lonr", 0.0, \
 "range", 380.0)

tbmap = map.gettaskbar ()
tbmap.configure (\

"taskbar_exec", "projection=merc"
)

else:
ev = bueventview_create ()
bueventview_configure (ev, "dbname", dbname)
mapevents = Mapevents ("toplevel")

mapevents.setdefaults ()

map = mapevents.getmap ()
map.configure (\

 "latr", 0.0, \
 "lonr", 0.0, \
 "range", 380.0)

	mapevents.seteventview (ev)

tbmap = map.gettaskbar ()
tbmap.configure (\

 "taskbar_exec", "projection=merc")
tb = mapevents.gettaskbar ()
tb.configure (\

 "taskbar_exec", "symbol=circle")
tb.configure (\

 "taskbar_exec", "rt=rtp")

mw = Root()
mw.setgeometry (2500, 1.5, 1)

mw.show ()

mw.qtmainloop ()

mw.pymainloop()

•  man bqplot
•  man pythonbqplot

Development of Python interpreter for
bqplot

•  Continue bqplot Python extensions
•  Add ability to ingest maps in other formats (gif, tiff,

png, etc.)
•  Add ability to ingest maps from Web Map Servers

(WMS)
•  Separate, standalone bqplot server
•  Develop bqplot to add trace graphics and

manipulation functions
•  Develop bqplot to add simplified QUI widgets.

Further developments

