
Massively Parallel Analysis System for Seismology
(MsPASS):

a Framework for New Frontiers in Seismology
Research

Gary L. Pavlis

Department of Earth and Atmospheric Sciences

Indiana University, Bloomington, IN

Outline

• Overview of MsPASS
• Q&A
• MsPASS and Antelope
• Discussion: symbiosis of Antelope and MsPASS

MsPASS
1. Massively Parallel
• Single CPU thing of the past
• Archaic software infrastructure

2. Analysis System for Seismology
• Research analysis – flexibility
• For Seismology – tool for us

not computer scientistshttps://www.mspass.org/

What is in the box?

• Database to manage large data sets
• Scheduler to implement parallel processing
• Flexible but simple to use IO abstractions (read-write almost any format and from URL)
• Python job control language
• Algorithms – low level preprocessing (solved problem) focus

• All obspy signal processing algorithms
• Low-level windowing, bundling, and similar grungy stuff
• Three-component primitives (rotation and transformation)
• Trace editng
• Header math
• SNR calculations
• All common P receiver function deconvolution+novel new method

• Runs on all linux, MacOS, and Windows via docker/singularity

One-liner perspectives on MsPASS

• Only open-source, generic system today for large-scale parallel
processing of seismology data
• Only open-source, generic solution today suitable for cloud

computing
• Obspy on steroids
• Runs on almost any system
• Written by a pair of geeky seismologists for seismologists

Design Goals

• Framework for processing seismology data
• Scalable to exploit parallelism and massive storage
• Open source
• Enable reproducible science results – publish your notebook and someone

can recreate our data set

• Research system
• Flexible but powerful
• Scalable from desktop to large clusters
• Minimize initial startup energy barrier (essential for students) yet be

extensible to any known data processing algorithm
• Generic as possible

Production versus Research IT systems

Production
• Solves Specific Problem

• Performance is critical
• Time is money
• Mission critical role

• Operable with minimum skill set
necessary for job

• Data model well known and fixed

Research
• Handle range of problems

• Performance is secondary
• Feasible sufficient
• Many one-up solutions

• Can assume users are specialists
and life-long learners

• Data highly variable (one person’s
signal is another’s noise)

MsPASS is NOT

• Ideal solution for problems we viewed as solved:
• Real time data handling
• Seismic event catalog processing
• Seismic reflection processing
• Archival data management

• Fully optimized
• Complete

• This is a framework, not a turnkey solution to all problems
• Full success requires extensions from people like you

Developers

• Ian (Yinzhi) Wang
• Leader
• His brainchild
• Python guru

• Gary Pavlis
• Design builds on my experience
• C++ code base
• Documentation

• UT Graduate Students
• Weiming Yang
• Jinxin Ma
• Zhengtang Yang
• Chenxiao Wang

Kent Lindquist: MsPASS is an example
of “Software Craftsmanship” not
“Software Engineering”

Sustainability (NSF jargon)

• A big issue in most open-source packages – software rusts
• Wang has NSF funding for now through SCOPED project
• I expect to work on MsPASS until I’m mentally incompetent or

dead
• Most pressing long-term need is to build the user base

End of Nontechnical Overview

Put on your geek hats

MsPASS Major Components
Docker container

MongoDBScheduler
(Dask or Spark)

python

Python code
base

C++ code
base

pybind11

jupyter
notebook

Element 1: parallel schedulers

• Map-reduce model
• Modern jargon term
• Online sources obscure some simple concepts
• Main paradigm for MsPASS parallel processing

• A modern paradigm likely to have a long lifetime
• I will introduce by analogy to unix pipeline concepts I assume all

of you know

Seismic Reflection Workflow model

Example: seismic unix
• Illustrates traditional

model
• Key point is data flow

through processors
• Processors read input,

modify it, and emit
output

Bandpass

display

mute

Read

NMO

real examples would add arguments for parameters
subfilt < mydata | sunmo | sumute | suxwig

MsPASS Parallelization: map-reduce model

From Wang and Pavlis(2021)

Key points

• Map operator
• Behaves like a unix

filter
• Scheduler assigns

each datum to
processes

• Reduce operator

• Data flow
• Parallel pipeline
• Conceptually similar

to unix shell | symbol
• Scheduler moves data
• Faster for threads

than nodes

Spark RDD == Dask bag

• Documentation for both Spark
and Dask obscure this topic

• RDD/bag concepts
• Algorithmically identical to a large

array of things (objects)
• Workers can pull any component in

equal time
• The collection of things (data set)

may not fit in memory

• Other parallel containers
• Dataframe (table)
• Array (matrix bigger than memory)

Comparison of serial and parallel workflows

cursor = db.wf_Seismogram.find({})
data = read_distributed_data(db, cursor)
data = data.map(signals.detrend,'demean')
data = data.map(signals.filter,"bandpass",
freqmin=0.01, freqmax=2.0)
windowing is relative to start time. 300 s window
starting at d.t0+200
data = data.map(lambda d : WindowData(d, 200.0,
500.0, t0shift=d.t0))
res = data.map(db.save_data,

collection="wf_Seismogram”,data_tag=“results”)
data_out = data.compute()

cursor = db.wf_Seismogram.find({})
for doc in cursor:
d = db.read_data(doc,collection=“wf_Seismogram”)
d = signals.detrend(d,’demean’)
d = signals.filter(d,”bandbass”,
freqmin=0.01,freqmax=2.0)

d = WindowData(d,200.0,500.0,t0shift=d.t0)
db.save_data(d,collection=”wf_Seismogram”,

data_tag=“results”)

Serial Parallel (Dask)

Key point: loop processing easily translated to series of map operators
Result acts like: demean < datafile | filter > outfile

Database Overview

• MsPASS uses MongoDB
• What it is?
• How it differs from Datascope and other relational dbms?

• Why we use MongoDB in MsPASS?

Header or Database: a 40+ yr long debate

Strengths
• Simple conceptual

model==Simple API
• Lightning fast metadata attribute

access
• Fixed namespace reduces

complexity

Weaknesses
• Repairing headers requires

reading entire data set
• Fixed, limited attribute

namespace

• Strengths
• Easier to maintain metadata

attributes
• Extensible metadata namespace

• Weaknesses
• Conceptual model much more

complex
• Today all transactions are VERY

slow compared to computational
speeds

Headers (e.g. SAC) Relational DBMS

MongoDB – what is it?

• Part of a family of “NoSQL DBMS” == Not Relational
• MongoDB a “Document Database” - misleading name
• Critical concepts:

• All about key-value pairs
• MongoDB’s “document” maps exactly into a python dictionary container

• Let’s look at a simple demonstration with a jupyter notebook

Key Points

• MongoDB a perfect match for a “generalized header”
• By default MongoDB is completely promiscuous about what it saves

(anything you can put in a python dictionary can be saved in db)

For geeky details see:
https://www.mspass.org/user_manual/data_object_desig
n_concepts.html#

{ “npts” : 1024,
“t0” : 601489897876697.89,
“sta” : “AAK”
”chan” : “BHZ”
…

}
{ “npts” : 1024,

“t0” : 601489897876684.24,
“sta” : “BZN”
”chan” : “BHZ”
…

}
…

MongoDB collection

FDSN data
center

Docker

Practical
• Solution for python package

collisions
• Allows MsPASS to run on any

platform supporting docker
• Avoids open source complexities

to build from source code (binary
distribution)

• Easy entry point for cloud
computing – you can just run on
AWS

Details
• Our container uses MongoDB set

up with Ubuntu as base
• We extend the base with Dask,

Spark, and Jupyter
• We extend the base container

with MsPASS code base (including
obspy) and a few other smaller
packages

• Support intel and new mac
hardward (arm64)

Abstraction: Virtual Cluster

• Example:
• 6 workers
• 6 processor ”cluster”
• 3 physical “nodes”

• Expandable to as many
nodes/cores as available

• Docker is the enabling
technology for our
approach

Desktop: abstracted as one worker cluster

• Abstracted as one
worker cluster

• Worker can use
multiple cores

• The 4 “roles” are
background
processes in the
same container

References:

• User manual
• github site

• Source code for entire package
• Discussion pages
• Issues pages

• Tutorial github repository of Jupyter notebooks
• Publication in SRL
• SCOPED docker repository

https://www.mspass.org/
https://github.com/mspass-team/mspass
https://github.com/mspass-team/mspass_tutorial
https://github.com/orgs/SeisSCOPED/packages

Part 2: MsPASS and Antelope

Questions about MsPASS?

Starting Points

• We thought hard about lessons from Antelope’s Datascope we
should adopt in MsPASS
• We thought hard about weaknesses in Datascope we needed to

overcome
• Our aim was to complement Antelope and other software – MsPASS

is a framework

Datascope Strengths and Weaknesses

Strengths
• Performance
• Relatively easy to maintain
• Multiple ways to access the db:

shell, C/C++, perl, and python
• Join is fast and efficient
• It just works

Weaknesses
• Designed before parallel

computing became mainstream
• Schema can be changed but is

inflexible
• The API is horribly complex (e.g,

how many 0’s for dblookup?)
• A simple “find” is hard
• Platform portability limits
• Documentation

MsPASS design leans on Antelope and other
seismology software development history

• MongoDB, like Datascope, can be easily maintained without a DB admin
• Worked hard to simplify API as much as possible
• Leading edge but not bleeding edge components (The lesson of CORBA)
• Make it work before you make it fast – not Enterprise software
• Militantly object-oriented design

• Essential to separate API from implementation details
• Well matched to python
• More maintainable

• Documentation viewed as critical
• User manual
• Python API – sphynx generated docstrings (similar to obspy)
• C++ code base – doxygen generated pages

Antelope-MsPASS interaction: what is needed?

• Datascope table translation to MsPASS MongoDB
• Main topic we focused on
• Multiple prototypes (next slide)

• Simplified ways to import/export data between systems
• Needs work on both ends
• May allow evolution away from aging Datascope

• Interaction with orb
• ORB+MsPASS as data transfer agent (slide later)
• MsPASS alternative to wfprocess for event driven RT applications

Current MsPASS and Antelope interface

• Caveat: first 2 should be considered prototypes
• Version 1: found here on github

• Early prototype we may deprecate
• Not integrated with automatic test suite (may be broken)

• Version 2: Datascope handle python object found here
• In development site for new plane wave migration
• An OOP interface to Datascope
• Driven by a pf partial css3.0 defintion found here
• Loads tables in pandas dataframe

• Framework component of importance: normalize module
• Generic algorithms solving more than Antelope imports
• Likely framework for additional development

https://github.com/mspass-team/mspass/blob/master/python/mspasspy/preprocessing/css30/dbarrival.py
https://github.com/pavlis/parallel_pwmig/blob/master/python/pwmigpy/db/datascope.py
https://github.com/pavlis/parallel_pwmig/blob/master/data/pf/AntelopeDatabase.pf

Normalization

• Reference in user manual here
• Generic definition of “Matcher” object

• Concept is a generic api to match a row of a table to one or more Metadata
key-value pairs

• Generic version of what dbjoin does

• Have multiple working examples using Datascope tables loaded as
Panda Dataframe
• Biggest future use is matching arbitrary tables of data to

waveforms to load Metadata

https://www.mspass.org/user_manual/normalization.html

Idea: Antelope as transfer middleware

Concepts:
• ORB is efficient long-haul internet

transfers (orb2orb)
• Cloud storage

• Future for FDSN data delivery
• Web service NOT error free transmission

and slow
• MsPASS prototype with SCEC data center

• MsPASS could be effective as a reader
and writer through ORB

• ”All” that is needed is an orb reader
and writer for MsPASS

This Photo by Unknown Author is licensed
under CC BY

FDSN cloud storage

MsPASS
Container

MsPASS
Container

ORB

https://www.flickr.com/photos/piro007/10457232636/
https://creativecommons.org/licenses/by/3.0/

Discussion:

• How might MsPASS help your personal research program?
• How might MsPASS help others in your institution?
• What could we do to improve MsPASS to help you?
• How can we expand MsPASS functionality?
• I showed what we have for import tools from Datascope tables. What

else might be needed?
• Are there ways MsPASS could be an aid in network operations?

• Event-driven real time processes?
• Bulletin preparation? (e.g. framework for machine learning or large scale cross-

correlation processing?)

