
traceview: A New
Replacement for dbpick

Danny Harvey

Boulder Real Time Technologies, Inc.

Antelope User Group Meeting, Taormina, Sicily

2019 May

1

dbpick

• Oldest and most used software module in Antelope
• First version written in 1989 based on a prior version

written mainly in FORTRAN using SUN’s
proprietary OpenLook window graphics

• dbpick developed almost entirely in C on a SUN4-
SPARCSTATION using the then new X-windows
graphics middleware

• Designed for a single CPU, single threaded 20 Mhz
processor using 64 Mbytes of RAM and no graphics
acceleration

• Based on ASCII representations of CSS2.7 database
tables

• Pre-datascope
• Pre-Antelope parameter files
• Design was driven by seismic analyst suggestions

and testing

dbpick – requirements

• Support for normal seismic analyst
operations (not necessarily research)

• CSS database as source
• Highest performance given slow CPU,

single CPU, small RAM, slow graphics
• User interaction to support seismic

analyst suggestions and input
• Make the program as self contained as

possible so that it could be used by
Universities (no external Relational
Database Management System)

dbpick – design

• Database access using home brewed
software library

• X-windows application
• Avoided any graphics middleware
• Developed concept of waveform pixilation

in time
• Database wfdisc and arrival tables read

and saved internally at startup. Waveforms
accessed as necessary. Static arrival saved
view but edits pushed out to table. Static
wfdisc view.

• GUI largely designed from seismic analyst
suggestions and input

dbpick – subsequent development

• Conversion to Datascope (early 90s)

• Conversion to CSS3.0 (early 90s)
• Integration with dbloc2 (mid 90s)

 Command type-in interface
 tcl/tk based command message

passing

• Addition of event-oriented processing
(mid 90s)

• Attempt to support dynamic database
queries (2011)

dbpick – The Good

• Stable and mature waveform viewing and
arrival editing program

• Probably the highest performance program
for viewing waveforms

• Operates equally well on large and small
databases

• Does not require any pre-processing
• Operates directly off of databases without

the need for external Relational Database
Management Systems

• Highly efficient analyst review interactions
• Provides generalized command mechanism

through typein interface

dbpick – The Bad

• Depends on X-windows
• Outdated software development style (written 30

years ago in C with very little middleware or
infrastructure support)

• Does not adhere to Antelope configuration
standards (no parameter files)

• Limited user configuration
• Written as a monolithic application that is not

reusable in other programs
• Has become difficult to modify and maintain
• Limited in its ability to support research
• Not a suitable platform for further development

dbpick – The Ugly

• Synchronization with dynamically
changing databases

• Proper functioning with dynamically
changing databases

• Can be unreliable when multiple users
and/or processes are modifying the same
database

traceview

• Newly developed software meant to be a
complete replacement for dbpick

• Development started June 2018
• In the 5.9 Antelope release, both dbpick

and traceview applications

• Also, in the 5.9 Antelope release,
BQTraceview C++ class library and

appropriate python extensions

traceview – Development Requirements

• Preserve the good features of dbpick
 High performance
 Highly scalable
 No pre-processing
 Direct database access
 Efficient analyst GUI
 Generalized command interface

• Preserve the dbpick GUI
• Use modern software development methodologies
• Make compatible with Antelope configuration standards
• Develop as reusable software modules
• Avoid dependence on X-windows
• Provide an easily extendable platform for developing

future capabilities
• Provide access through python

• Eliminate datascope vulnerabilities

traceview – Development Strategy

• Emulate dbpick GUI as much as reasonable
• Develop as one or more reusable and extendable C++

classes
• Use Qt as the underlying graphics middleware
• Develop as a BQPlot compatible viewport item
• Use other BQPlot classes to implement glyph displays

and interaction
• Use Antelope configuration standards
• Provide a high level of user configuration
• Develop appropriate python wrappers
• Adopt waveform time pixelation methodology

developed in dbpick
• Develop generalized command methods as used in
dbpick

• Develop separate class to support a user type-in interface
• Use EVServer and EVClient classes to provide safe

database interactions

traceview – Basic Design

• New C++ class, BQTraceview, developed as a BQPlot
viewport item using the Qt graphics middleware

• BQTraceview objects highly configurable through
Antelope standard parameter file objects

• Helper C++ classes developed, including BQPixelator
to implement high performance dbpick-style time
pixelation, BQTrace to implement single waveform
display and interaction and BQTraceviewCommands to
implement generic command interface for
BQTraceview

• New BQCommandConsole class developed to provide a
user command type-in interface

• python wrappers for BQTraceview and
BQCommandConsole

• BQTraceview creates internal EVClient object
for connection with external EVServer object

t r acevi ew – Basic Design

• New C++ class, BQTr acevi ew, developed as a BQPl ot
viewport item using the Qt graphics middleware

• BQTr acevi ewobjects highly configurable through
Antelope standard parameter file objects

• Helper C++ classes developed, including BQPi xel at or
to implement high performance dbpi ck-style time
pixelation, BQTr ace to implement single waveform
display and interaction and BQTr acevi ewCommands to
implement generic command interface for
BQTr acevi ew

• New BQCommandConsol e class developed to provide a
user command type-in interface

• python wrappers for BQTr acevi ewand
BQCommandConsol e

• BQTr acevi ew creates internal EVCl i ent object
for connection with external EVSer ver object

BQTraceview

database

EVServerEVClient

BQGlyphs

BQPixelator

BQTrace

BQCommandConsole

External programmatic
commands using
sendCommand function

BQTraceviewCommands

BQEVEventsTableview

“Event View” specialized server-client

interface into Datascope databases

• Two new object oriented c++ classes were
introduced in Antelope 5.7 – EVServer
and EVClient (see man EV(3)).

• These event view classes provide a
server-client implementation of database
access operations specific to the various
seismic event tables in the css schema.

EV(3) C Library Functions EV(3)

NAME
EV - BRTT utility for earthquake event view formation

SYNOPSIS
-lbrttutil

#include "EV.h"

DESCRIPTION
There are two fundamental classes, EVServer and EVClient, that implement complete views of earthquake

ev ent information from underlying databases. They are intended to be dynamic in response to changing

databases. Information from events, origins, origin errors, associations, arrivals, detections, stations, magni-

tudes and moment tensors are joined in a set of views that can be returned through a set of specialized

structures.

The underlying database is monitored and the views are made by a single EVServer object. The views are

refreshed automatically by EVServer objects whenever any of the database file modification times have

changed. EVServer makes all of the joins though calls to dbmatches(3) only, without using the various

other Datascope view generation routines, such as dbjoin(3). Most Datascope view generation routines

cannot track dynamic changes in the underlying database. By only using dbmatches(3), which is designed

to track certain changes in the underlying database, EVServer objects can track changes in the database

and recompute the various view structures as required. All calls to dbmatches(3), dbget(3) or dbgetv(3)

made by EVServer objects trap error returns, which could be caused by changes in the database during

EVServer processing. When dbget(3), dbgetv(3) or dbmatches(3) return errors, the EVServer object will

automatically close the database, reopen it, free all dbmatches(3) hooks, and reform the various views.

This will also happen automatically whenever the database files shrink in size.

Once an EVServer object has been created and configured, it will continuously monitor a database and

compute the various event views whenever necessary. Interactions with these views are accomplished

through EVClient objects. Whereas only one EVServer object should be created for a particular database,

any number of EVClient objects can provide independent interfaces to the event view server. Each

EVClient object can run safely on separate threads. The EVServer object notifies each of its clients

through callback procedures whenever the various views have changed. The EVClient objects can then

obtain copies of the changed views from the EVServer object through a set of client methods. All informa-

tion in the event views are copies of the original views kept be the EVServer object. There are no pointers

back to information that could become stale as the views are updated.

EVENT VIEWS
The various event views are returned as c++ structures. The fundamental event view structure, EVEvent, is

defined below.

struct EVEvent {

EVEvent () {

recno_event = -1;

evid = -1;

prefor = -1;

order = -1;

lddate_event = 0.0;

lddate_view = 0.0;

access_time = 0.0;

magnitude = -999.0;

strcpy (magtype, "");

pref_origin = -1;

pref_magnitude_origin = -1;

pref_moment_origin = -1;

}

BRTT Antelope dev 2017-05-25 1

EVServer

EVClient

EVClient

EVClient

EVServer::run_thread

EVClient

database

• EVServer objects launch a thread,
EVServer::run_thread, to interact with the
database. This thread is the only thread that interacts
with the database.

• The primary responsibility of
EVServer::run_thread is to keep an up to date
internal set of structures that contain all of the
information from the database, including copies of
the database records, all linked together to form
earthquake event oriented views.

• None of the internal structures contain database
pointers or other references back to the database. In
this way the internal structures are complete and self
consistent snapshots of the database at the time when
the structures were made.

• EVClient objects can request copies of the
internal structures that EVServer objects
maintain.

• EVClient objects can register callback functions
with their EVServer. EVServer::run_thread
will execute these callbacks whenever any of the
internal structures have changed.

• All EVClient acquired event view structures
are complete and self consistent snapshots of the
database at the time when the structures were
made.

• EVClient objects never try to reference the
database directly.

EVServer changes to support traceview

• Serve wfdisc rows

• Serve unassociated arrival rows

• Serve unassociated detection rows

• Serve unassociated site rows

• Provide generic equivalents to dbput,
dbnextid and dbadd

• Provide generic equivalents to
dbsubset and dbmatches

traceview – Command Processing

• Most BQTraceview object run time display configuration and
editing functions are specified through a command processing
interface

• Commands can be sent to BQTraceview objects at run time
either through a type-in interface or programmatically

• A new class, BQCommandConsole, was developed to provide a
generalized user command type-in interface
 all commands are stored in an internal command history

queue
 history substitutions using the up and down arrows keys
 in-line command editing
 command history queue can be dumped to an external file
 commands can be read from an external file and executed as

if typed
 The typed-in commands, normal command output and

command error output are displayed in different colors

traceview – Command Processing

• BQTraceview object commands are processed
by a helper class, BQTraceviewCommands
 commands can be aliased
 commands support simple variable

substitution
 keyboard shortcuts (hotkeys) can be defined

• A BQTraceview object can be linked, through
its BQTraceviewCommands helper object, to a
BQCommandConsole object providing a user
type-in interface

• Also, remote commands can be sent to a
BQTraceview object, through its
BQTraceviewCommands helper object, and
these commands can be optionally echoed in any
linked BQCommandConsole object.

traceview – Trace Expressions and Duplication

• The commands involving traces
objects can contain an optional
trace_exprs string which defines a
subset of all traces

• When the trace_exprs string is
specified, actions apply only to those
traces that match the expressions

• Traces can be duplicated – duplicated
traces are indicated by a
;<copy_number> appended to the
channel code

traceview – Arrival Editing

• When arrivals need to be edited or added, the BQTraceview
object must be put into a special edit mode using the command
arrivals edit_mode on

• When a BQTraceview object is in edit mode:

 the display changes its background and foreground colors
 a new mouse interaction is enabled to select groups of

arrivals
 when arrivals are selected, the time uncertainty and residuals

are displayed
 selected arrivals can have their times and time uncertainties

edited interactively
 selected arrivals can have their phases edited or can be

marked as deleted interactively through a user defined
popup menu

 selected arrivals can be tagged as being defining or non-
defining in a subsequent re-location

 selected arrivals can be copied into a clipboard and pasted as
a group as new arrivals at a different time

 an arrival editing history is kept and edits can be undone and
redone

traceview – Configuration and Python

• All configuration done through
standard Antelope parameter file

• python extensions for both
BQTraceview and
BQCommandConsole classes

traceview – New Stuff

• C++ class definitions allow easy reuse
• Qt based graphics
• EVServer based database access

• New command console class supporting command editing
• More systematic command syntax
• Ability to apply commands to specific traces
• Ability to duplicate traces
• Ability to save and replay commands
• User defined command aliases
• User defined command hot keys
• Arrival edit mode
• Ability to select and edit multiple arrivals
• Ability to tag arrivals
• Ability to copy and paste arrivals
• Ability to undo and redo arrival edits
• User defined editing menus
• Use of standard Antelope parameter files for configuration
• python interface

traceview – Still To Do

• Magnify windows

• Arrival amplitude and period
editing

• Ability to connect to different data
sources (multiple databases, ORB,
Trace databases, etc.)

• Different trace displays
(spectragram, etc.)

• Ability to overlay traces

